Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches

S. Ganpule, A. Alai, E. Plougonven, N. Chandra

Research output: Contribution to journalArticlepeer-review

148 Scopus citations

Abstract

Blast waves generated by improvised explosive devices can cause mild, moderate to severe traumatic brain injury in soldiers and civilians. To understand the interactions of blast waves on the head and brain and to identify the mechanisms of injury, compression-driven air shock tubes are extensively used in laboratory settings to simulate the field conditions. The overall goal of this effort is to understand the mechanics of blast wave-head interactions as the blast wave traverses the head/brain continuum. Toward this goal, surrogate head model is subjected to well-controlled blast wave profile in the shock tube environment, and the results are analyzed using combined experimental and numerical approaches. The validated numerical models are then used to investigate the spatiotemporal distribution of stresses and pressure in the human skull and brain. By detailing the results from a series of careful experiments and numerical simulations, this paper demonstrates that: (1) Geometry of the head governs the flow dynamics around the head which in turn determines the net mechanical load on the head. (2) Biomechanical loading of the brain is governed by direct wave transmission, structural deformations, and wave reflections from tissue-material interfaces. (3) Deformation and stress analysis of the skull and brain show that skull flexure and tissue cavitation are possible mechanisms of blast-induced traumatic brain injury.

Original languageEnglish (US)
Pages (from-to)511-531
Number of pages21
JournalBiomechanics and Modeling in Mechanobiology
Volume12
Issue number3
DOIs
StatePublished - Jun 2013
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Modeling and Simulation
  • Mechanical Engineering

Keywords

  • Blast
  • Experiments
  • FSI
  • Head
  • Mechanics
  • Numerical models
  • TBI

Fingerprint

Dive into the research topics of 'Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches'. Together they form a unique fingerprint.

Cite this