Microfluidic Gas Sensors: Detection Principle and Applications

Sreerag Kaaliveetil, Juliana Yang, Saud Alssaidy, Zhenglong Li, Yu Hsuan Cheng, Niranjan Haridas Menon, Charmi Chande, Sagnik Basuray

Research output: Contribution to journalReview articlepeer-review

11 Scopus citations


With the rapid growth of emerging point-of-use (POU)/point-of-care (POC) detection technologies, miniaturized sensors for the real-time detection of gases and airborne pathogens have become essential to fight pollution, emerging contaminants, and pandemics. However, the low-cost development of miniaturized gas sensors without compromising selectivity, sensitivity, and response time remains challenging. Microfluidics is a promising technology that has been exploited for decades to overcome such limitations, making it an excellent candidate for POU/POC. However, microfluidic-based gas sensors remain a nascent field. In this review, the evolution of microfluidic gas sensors from basic electronic techniques to more advanced optical techniques such as surface-enhanced Raman spectroscopy to detect analytes is documented in detail. This paper focuses on the various detection methodologies used in microfluidic-based devices for detecting gases and airborne pathogens. Non-continuous microfluidic devices such as bubble/droplet-based microfluidics technology that have been employed to detect gases and airborne pathogens are also discussed. The selectivity, sensitivity, advantages/disadvantages vis-a-vis response time, and fabrication costs for all the microfluidic sensors are tabulated. The microfluidic sensors are grouped based on the target moiety, such as air pollutants such as carbon monoxide and nitrogen oxides, and airborne pathogens such as E. coli and SARS-CoV-2. The possible application scenarios for the various microfluidic devices are critically examined.

Original languageEnglish (US)
Article number1716
Issue number10
StatePublished - Oct 2022

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Mechanical Engineering
  • Electrical and Electronic Engineering


  • gas sensing
  • microfluidics
  • selectivity
  • sensitivity


Dive into the research topics of 'Microfluidic Gas Sensors: Detection Principle and Applications'. Together they form a unique fingerprint.

Cite this