Microporous SiO2/Vycor membranes for gas separation

R. A. Levy, E. S. Ramos, L. N. Krasnoperov, A. Datta, J. M. Grow

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

In this study, porous Vycor tubes with 40 Å initial pore diameter were modified using low pressure chemical vapor deposition (LPCVD) of SiO2. Diethylsilane (DES) in conjunction with O2 or N2O were used as precursors to synthesize the SiO2 films. Both "single side" (reactants flowing on the same side of porous membrane) and "counterflow" (reactants flowing on both sides of porous membrane) reactant geometries have been investigated. The flow of H2, He, N2, Ar, and toluene (C7H8) was monitored in situ after each deposition period. Membranes modified by the "single side" reactants geometry exhibited good selectivities between small and large molecules. However, cracking in these membranes after prolonged deposition limited the maximum achievable selectivity values. Higher selectivities and better mechanical stability were achieved with membranes produced using the "counterflow" reactants geometry. Pore narrowing rate was observed to increase with oxidant flow (O2 or N2O). For membranes prepared using both oxidants, selectivities on the order of 1000:1 were readily attained for H2 and He over N2, Ar, and C7H8. As compared to O2, the use of N2O caused improvements in both the pore narrowing rate and N2:C7H8 selectivity. Membranes prepared using the "counterflow" geometry showed no signs of degradation or cracking after thermal cycling.

Original languageEnglish (US)
Pages (from-to)3164-3173
Number of pages10
JournalJournal of Materials Research
Volume11
Issue number12
DOIs
StatePublished - Dec 1996

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Microporous SiO2/Vycor membranes for gas separation'. Together they form a unique fingerprint.

Cite this