Abstract
High capacity, long cycle life, and fast kinetics are highly desired for alloying anodes in sodium ion capacitors (SICs). However, the huge repeatedly volume changes during the alloying/dealloying process cause electrode pulverization, seriously degrading the capacity and cycling stability. To address this issue, we developed a microwave irradiation technology for the in-situ growth of nano-sized Bi uniformly anchored on the surface of carbon nanotubes (CNTs). The as-synthesized freestanding electrode film effectively retards the pulverization of Bi nanoparticles, enabling fast sodium storage kinetics for high-power performance (278.1 mAh g−1 @ 30 A g−1), as well as high-capacity retention of 94% for over 3,500 cycles. The coin-cell type SICs of a Bi/CNTs anode paired with an activated carbon (AC)/CNTs cathode can deliver a maximum energy density of 128.5 Wh kg−1 and a high power density of 12.3 kW kg−1 with a remaining energy density of 85 Wh kg−1. Additionally, the flexible quasi-solid SICs using a gel electrolyte demonstrated a high volumetric energy density of 21 mWh cm−3 with good cycling stability (90%) for over 1500 cycles. These results show great promise for our developed SICs as the next-generation energy storage to bridge the performance gap between batteries and supercapacitors, as well as for flexible energy storage applications.
Original language | English (US) |
---|---|
Pages (from-to) | 420-427 |
Number of pages | 8 |
Journal | Journal of Colloid And Interface Science |
Volume | 643 |
DOIs | |
State | Published - Aug 2023 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Biomaterials
- Surfaces, Coatings and Films
- Colloid and Surface Chemistry
Keywords
- Bismuth nanoparticles
- Carbon nanotubes
- Flexible sodium ion capacitor
- Microwave