TY - JOUR
T1 - Mixtures of phthalates disrupt expression of genes related to lipid metabolism and peroxisome proliferator-activated receptor signaling in mouse granulosa cells
AU - Alahmadi, Hanin
AU - Martinez, Stephanie
AU - Farrell, Rivka
AU - Bikienga, Rafiatou
AU - Arinzeh, Nneka
AU - Potts, Courtney
AU - Li, Zhong
AU - Warner, Genoa R.
N1 - Publisher Copyright:
© 2024 The Author(s).
PY - 2024/11/1
Y1 - 2024/11/1
N2 - Phthalates are a class of known endocrine-disrupting chemicals that are found in common everyday products. Several studies associate phthalate exposure with detrimental effects on ovarian function, including growth and development of the follicle and production of steroid hormones. We hypothesized that dysregulation of the ovary by phthalates may be mediated by phthalate toxicity towards granulosa cells, a major cell type in ovarian follicles responsible for key steps of hormone production and nourishing the developing oocyte. To test the hypothesis that phthalates target granulosa cells, we harvested granulosa cells from adult CD-1 mouse ovaries and cultured them for 96 h in vehicle control, a phthalate mixture, or a phthalate metabolite mixture (0.1 to 100 μg/ml). After culture, we measured metabolism of the phthalate mixture into monoester metabolites by the granulosa cells, finding that granulosa cells do not significantly contribute to ovarian metabolism of phthalates. Immunohistochemistry of phthalate metabolizing enzymes in whole ovaries confirmed that these enzymes are not strongly expressed in granulosa cells of antral follicles and that ovarian metabolism of phthalates likely occurs primarily in the stroma. RNA sequencing of treated granulosa cells identified 407 differentially expressed genes, with overrepresentation of genes from lipid metabolic processes, cholesterol metabolism, and peroxisome proliferator-activated receptor (PPAR) signaling pathways. Expression of significantly differentially expressed genes related to these pathways was confirmed using qPCR. Our results agree with previous findings that phthalates and phthalate metabolites have different effects on the ovary, but both interfere with PPAR signaling in granulosa cells.
AB - Phthalates are a class of known endocrine-disrupting chemicals that are found in common everyday products. Several studies associate phthalate exposure with detrimental effects on ovarian function, including growth and development of the follicle and production of steroid hormones. We hypothesized that dysregulation of the ovary by phthalates may be mediated by phthalate toxicity towards granulosa cells, a major cell type in ovarian follicles responsible for key steps of hormone production and nourishing the developing oocyte. To test the hypothesis that phthalates target granulosa cells, we harvested granulosa cells from adult CD-1 mouse ovaries and cultured them for 96 h in vehicle control, a phthalate mixture, or a phthalate metabolite mixture (0.1 to 100 μg/ml). After culture, we measured metabolism of the phthalate mixture into monoester metabolites by the granulosa cells, finding that granulosa cells do not significantly contribute to ovarian metabolism of phthalates. Immunohistochemistry of phthalate metabolizing enzymes in whole ovaries confirmed that these enzymes are not strongly expressed in granulosa cells of antral follicles and that ovarian metabolism of phthalates likely occurs primarily in the stroma. RNA sequencing of treated granulosa cells identified 407 differentially expressed genes, with overrepresentation of genes from lipid metabolic processes, cholesterol metabolism, and peroxisome proliferator-activated receptor (PPAR) signaling pathways. Expression of significantly differentially expressed genes related to these pathways was confirmed using qPCR. Our results agree with previous findings that phthalates and phthalate metabolites have different effects on the ovary, but both interfere with PPAR signaling in granulosa cells.
KW - granulosa cells
KW - ovary
KW - peroxisome proliferator-activated receptor
KW - phthalates
UR - http://www.scopus.com/inward/record.url?scp=85207908590&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85207908590&partnerID=8YFLogxK
U2 - 10.1093/toxsci/kfae105
DO - 10.1093/toxsci/kfae105
M3 - Article
C2 - 39150890
AN - SCOPUS:85207908590
SN - 1096-6080
VL - 202
SP - 69
EP - 84
JO - Toxicological Sciences
JF - Toxicological Sciences
IS - 1
ER -