TY - GEN
T1 - Modeling and benchmarking computing-in-memory for design space exploration
AU - Reis, Dayane
AU - Gao, Di
AU - Angizi, Shaahin
AU - Yin, Xunzhao
AU - Fan, Deliang
AU - Niemier, Michael
AU - Zhuo, Cheng
AU - Sharon Hu, X.
N1 - Publisher Copyright:
© 2020 Association for Computing Machinery.
PY - 2020/9/7
Y1 - 2020/9/7
N2 - The bottleneck between the limited memory bandwidth and high speed processing demands is the main cause of problems associated with high volume of data transfers in data-intensive applications. As a possible remedy to these issues, computing-in-memory (CiM) enables a subset of logic and arithmetic operations to be performed where the data resides, i.e., inside the memory. Various CiM designs have been proposed to date, based on different technologies. Given the variety of options available, picking the right design option for a system/application can be a complex task. When choosing a CiM design, it is important to establish evaluation conditions that are as uniform as possible to make a fair choice between available design options. In this paper, we describe a methodology for an uniform benchmarking of CiM designs. Our approach evaluates devices/circuits, arrays and the overall impact of CiM to a system with a framework based on Eva-CiM. As a case study, we analyze the array-level performance of 7 recent CiM designs implemented with SRAM, DRAM, FeFET-RAM, STT-MRAM, SOT-MRAM, and RRAM. After we identify that the FeFET-RAM-based design shows promising energy and delay savings at the array level, we carry out a system level evaluation showing that FeFET-RAM-based CiM outperforms a CMOS SRAM CiM baseline by an average of 60% across a set of 17 benchmarks (with respect to energy savings). Regarding speedups, both technologies offer virtually the same benefit of about ∼1.5× when compared to a situation where processing does not happen in memory.
AB - The bottleneck between the limited memory bandwidth and high speed processing demands is the main cause of problems associated with high volume of data transfers in data-intensive applications. As a possible remedy to these issues, computing-in-memory (CiM) enables a subset of logic and arithmetic operations to be performed where the data resides, i.e., inside the memory. Various CiM designs have been proposed to date, based on different technologies. Given the variety of options available, picking the right design option for a system/application can be a complex task. When choosing a CiM design, it is important to establish evaluation conditions that are as uniform as possible to make a fair choice between available design options. In this paper, we describe a methodology for an uniform benchmarking of CiM designs. Our approach evaluates devices/circuits, arrays and the overall impact of CiM to a system with a framework based on Eva-CiM. As a case study, we analyze the array-level performance of 7 recent CiM designs implemented with SRAM, DRAM, FeFET-RAM, STT-MRAM, SOT-MRAM, and RRAM. After we identify that the FeFET-RAM-based design shows promising energy and delay savings at the array level, we carry out a system level evaluation showing that FeFET-RAM-based CiM outperforms a CMOS SRAM CiM baseline by an average of 60% across a set of 17 benchmarks (with respect to energy savings). Regarding speedups, both technologies offer virtually the same benefit of about ∼1.5× when compared to a situation where processing does not happen in memory.
KW - Benchmarking
KW - Computing-in-memory
KW - Emerging technologies
UR - http://www.scopus.com/inward/record.url?scp=85091268112&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091268112&partnerID=8YFLogxK
U2 - 10.1145/3386263.3407580
DO - 10.1145/3386263.3407580
M3 - Conference contribution
AN - SCOPUS:85091268112
T3 - Proceedings of the ACM Great Lakes Symposium on VLSI, GLSVLSI
SP - 439
EP - 444
BT - GLSVLSI 2020 - Proceedings of the 2020 Great Lakes Symposium on VLSI
PB - Association for Computing Machinery
T2 - 30th Great Lakes Symposium on VLSI, GLSVLSI 2020
Y2 - 7 September 2020 through 9 September 2020
ER -