Modeling and simulation of tsunami impact: A short review of recent advances and future challenges

Simone Marras, Kyle T. Mandli

Research output: Contribution to journalReview articlepeer-review

20 Scopus citations

Abstract

Tsunami modeling and simulation has changed in the past few years more than it has in decades, especially with respect to coastal inundation. Among other things, this change is supported by the approaching era of exa-scale computing, whether via GPU or more likely forms of hybrid computing whose presence is growing across the geosciences. For reasons identified in this review, exa-scale computing efforts will impact the on-shore, highly turbulent régime to a higher degree than the 2D shallow water equations used to model tsunami propagation in the open ocean. This short review describes the different approaches to tsunami modeling from generation to impact and underlines the limits of each model based on the flow régime. Moreover, from the perspective of a future comprehensive multi-scale modeling infrastructure to simulate a full tsunami, we underline the current challenges associated with this approach and review the few efforts that are currently underway to achieve this goal. A table of existing tsunami software packages is provided along with an open Github repository to allow developers and model users to update the table with additional models as they are published and help with model discoverability.

Original languageEnglish (US)
Article number5
Pages (from-to)1-19
Number of pages19
JournalGeosciences (Switzerland)
Volume11
Issue number1
DOIs
StatePublished - Jan 2021

All Science Journal Classification (ASJC) codes

  • General Earth and Planetary Sciences

Keywords

  • Numerical methods
  • Tsunami modeling
  • Tsunami simulations

Fingerprint

Dive into the research topics of 'Modeling and simulation of tsunami impact: A short review of recent advances and future challenges'. Together they form a unique fingerprint.

Cite this