Abstract
A method for the reconstruction of the linear force-free magnetic field in a bounded domain (as a rectangular box, Ω) is presented here. The Dirichlet boundary-value problem for the Helmholtz equation is solved for the Bz component specified at the Ω boundary. Chebyshev's iteration method with the optimal rearrangement of the iteration parameters sequence was used. The solution is obtained as for the positive-definite, and for the non-sign-definite difference analogue of the differential operator ∇2u + α2u. Specifying two scalar functions, Bx and By on the intersection of the lateral part of the Ω boundary with one selected plane z = constant, and using Bz inside the Ω, we have found Bx and By throughout Ω. The algorithm was tested with the numerical procedure which gives the analytic solution B of the linear force-free field (LFFF) equations for the dipole in a half-space. The root-mean-square deviation of the analytic solution B from the calculated B′ does not exceed 1.0%. Boundary conditions for the B′ calculation were taken as given by the analytic LFFF solution B. Comparison of B′ with B″, which was calculated by the potential non-pholospheric boundary conditions, show that they differ significantly. Thus, the specification of boundary conditions at non-photospheric boundaries of the volume under consideration is of particular importance when modeling the LFFF in a bounded volume. The algorithm proposed here allows one to use the information about magnetic fields in the corona for the modeling of LFFF in a limited domain above an active region on the Sun.
Original language | English (US) |
---|---|
Pages (from-to) | 47-63 |
Number of pages | 17 |
Journal | Solar Physics |
Volume | 168 |
Issue number | 1 |
DOIs | |
State | Published - 1996 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science