Modeling of blood flow in the human brain

Md Shahadat Hossain, Bhavin Dalal, Ian S. Fischer, Pushpendra Singh, Nadine Aubry

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The non-Newtonian properties of blood, i.e., shear thinning and viscoelasticity, can have a significant influence on the distribution of Cerebral Blood Flow (CBF) in the human brain. The aim of this work is to quantify the role played by the non- Newtonian nature of blood. Under normal conditions, CBF is autoregulated to maintain baseline levels of flow and oxygen to the brain. However, in patients suffering from heart failure (HF), Stroke, or Arteriovenous malformation (AVM), the pressure in afferent vessels varies from the normal range within which the regulatory mechanisms can ensure a constant cerebral flow rate, leading to impaired cerebration in patients. It has been reported that the change in the flow rate is more significant in certain regions of the brain than others, and that this might be relevant to the pathophysiological symptoms exhibited in these patients. We have developed mathematical models of CBF under normal and the above disease conditions that use direct numerical simulations (DNS) for the individual capillaries along with the experimental data in a onedimensional model to determine the flow rate and the methods for regulating CBF. The model also allows us to determine which regions of the brain would be affected relatively more severely under these conditions.

Original languageEnglish (US)
Title of host publicationASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting Collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels, FEDSM2010
Pages1423-1427
Number of pages5
EditionPARTS A, B AND C
DOIs
StatePublished - 2010
EventASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting, FEDSM 2010 Collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels - Montreal, QC, Canada
Duration: Aug 1 2010Aug 5 2010

Publication series

NameAmerican Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
NumberPARTS A, B AND C
Volume1
ISSN (Print)0888-8116

Other

OtherASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting, FEDSM 2010 Collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
Country/TerritoryCanada
CityMontreal, QC
Period8/1/108/5/10

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Keywords

  • Arteriovenous malformation
  • Cerebral blood flow
  • Direct numerical simulation
  • Heart failure
  • Shear thinning
  • Simulation
  • Stroke
  • Viscoelasticity

Fingerprint

Dive into the research topics of 'Modeling of blood flow in the human brain'. Together they form a unique fingerprint.

Cite this