Modeling of the pressure drop and flow field in a rotating fluidized bed

Chao Zhu, C. H. Lin, G. H. Qian, R. Pfeffer

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


Rotating fluidized beds (RFB) have found applications as dust filters, dryers, particle coaters, and granulators, and recently as catalytic reactors for the clean up of diesel exhaust. However, successful design and operation of an RFB requires an in-depth understanding of the fundamentals of the fluid dynamics involved. In this study, mechanistic models have been developed to account for the pressure drop relationship with respect to rotating speed, flow rate, properties of the granular particles, and fluidization conditions in the RFB. The models show that the total pressure drop across the bed is quadratically dependent on the rotating speed as well as the flow rate. These quadratic relationships have also been validated experimentally. The pressure drop relationship has further been validated through a full flow field numerical simulation of flow through a rotating bed with a slotted cylindrical distributor but without granular particles in the bed. Using our analytical model together with experimental results from three different types of distributors, a slotted cylinder with a thin metal screen, a perforated cylinder with a thin metal screen, and a sintered metal cylinder, three semi-empirical quadratic equations are obtained to predict the pressure drop across these distributors. A comparison of the distributor pressure drop with that across the fluidized bed (granules only) shows that the pressure drop across the distributor is appreciable and cannot be neglected in RFB applications. The higher the rotating speed, the more significant the pressure drop across the distributor.

Original languageEnglish (US)
Pages (from-to)1132-1154
Number of pages23
JournalChemical Engineering Communications
Issue number9
StatePublished - Sep 2003

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Chemical Engineering


  • Analytical model
  • Numerical simulation
  • Pressure drop
  • Rotating fluidized bed


Dive into the research topics of 'Modeling of the pressure drop and flow field in a rotating fluidized bed'. Together they form a unique fingerprint.

Cite this