Abstract
We study the motion of voids in conductors subject to intense electrical current densities. We use a free-boundary model in which the flow of current around the insulating void is coupled to a law of motion (kinematic condition) for the void boundary. In the first part of the paper, we apply a new complex variable formulation of the model to an infinite domain and use this to (i) consider the stability of circular and flat front travelling waves, (ii) show that, in the unbounded metal domain, the only travelling waves of finite void area are circular, and (iii) consider possible static solutions. In the second part of the paper, we look at a conducting strip (which can be used to model interconnects in electronic devices) and use asymptotic methods to investigate the motion of long wavelength voids on the conductor boundary. In this case we derive a nonlinear parabolic PDE describing the evolution of the free boundary and, using this simpler model, are able to make some predictions about the evolution of the void over long times.
Original language | English (US) |
---|---|
Pages (from-to) | 97-134 |
Number of pages | 38 |
Journal | European Journal of Applied Mathematics |
Volume | 12 |
Issue number | 2 |
DOIs | |
State | Published - 2001 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Applied Mathematics