TY - GEN
T1 - Molecular Augmented Reality for Design and Engineering (MADE)
T2 - 22nd International Conference on Human-Computer Interaction, HCI International 2020
AU - Kum-Biocca, Hyejin Hannah
AU - Farinas, Edgardo T.
AU - Mistry, Nisha
AU - Wan, Yutong
N1 - Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
PY - 2020
Y1 - 2020
N2 - The design and manipulation of chemical systems involves understanding the form or morphology of chemical structures. An understand of the form of chemical structure includes an understanding of the components of chemical structure, the functions of the forms and sub-components, and changes in the structure of chemical systems during interaction, maturation, or chemical processes. Viewed from a computer graphic viewpoint these chemical processes can be described and modelled as three-dimensional structures, changing shape, and interacting with other 3D structures. Furthermore, our intuition was that the visualization should be as embodied as possible and open for collaboration. In this project we seek to create a tool for collaborative, embodied visualization of biomolecules. To achieve this interaction with targeted for hand on visualizations allowing for biomolecular exploration and scientific visualization within immersive augmented reality platforms. We anticipate a tool where components can assist both in (1) biomolecule discovery and design and a subset applicable for (2) education in biomolecules. We conducted some formative research to analyze user value and requirement. For the prototype we focused on the visualization of DNA binding protein, called Zip Proteins. These proteins are transcription factors. This system is implemented across two devices that support AR capabilities: head mount display (HMD) and the mobile phone. Key development is the porting of these molecules to immersive augmented reality environment for direct interaction. Describing the advantage of the platform for this application at the broadest level, we can say that augmented reality platforms allow for full embodied interaction with the structures at any scale and contextualized by the physical background. We also discuss future plans for this platform.
AB - The design and manipulation of chemical systems involves understanding the form or morphology of chemical structures. An understand of the form of chemical structure includes an understanding of the components of chemical structure, the functions of the forms and sub-components, and changes in the structure of chemical systems during interaction, maturation, or chemical processes. Viewed from a computer graphic viewpoint these chemical processes can be described and modelled as three-dimensional structures, changing shape, and interacting with other 3D structures. Furthermore, our intuition was that the visualization should be as embodied as possible and open for collaboration. In this project we seek to create a tool for collaborative, embodied visualization of biomolecules. To achieve this interaction with targeted for hand on visualizations allowing for biomolecular exploration and scientific visualization within immersive augmented reality platforms. We anticipate a tool where components can assist both in (1) biomolecule discovery and design and a subset applicable for (2) education in biomolecules. We conducted some formative research to analyze user value and requirement. For the prototype we focused on the visualization of DNA binding protein, called Zip Proteins. These proteins are transcription factors. This system is implemented across two devices that support AR capabilities: head mount display (HMD) and the mobile phone. Key development is the porting of these molecules to immersive augmented reality environment for direct interaction. Describing the advantage of the platform for this application at the broadest level, we can say that augmented reality platforms allow for full embodied interaction with the structures at any scale and contextualized by the physical background. We also discuss future plans for this platform.
KW - Augmented reality
KW - Chemistry
KW - Education
KW - Scientific visualization
UR - http://www.scopus.com/inward/record.url?scp=85097225757&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097225757&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-60703-6_22
DO - 10.1007/978-3-030-60703-6_22
M3 - Conference contribution
AN - SCOPUS:85097225757
SN - 9783030607029
T3 - Communications in Computer and Information Science
SP - 173
EP - 180
BT - HCI International 2020 – Late Breaking Posters - 22nd International Conference, HCII 2020, Proceedings
A2 - Stephanidis, Constantine
A2 - Antona, Margherita
A2 - Ntoa, Stavroula
PB - Springer Science and Business Media Deutschland GmbH
Y2 - 19 July 2020 through 24 July 2020
ER -