Abstract
We investigate the onset of cavitation in a metastable fluid confined to nanoscale pores with nonwetting defects present. Using grand canonical and gauge cell mesocanonical Monte Carlo simulations, we study the degree of metastability (relative vapor pressure), at which the critical bubble forms in a spherical pore with a circular nonwetting defect. It is shown that an increase of the defect size leads to a transition from homogeneous to heterogeneous nucleation of critical bubbles formed at the defect site. In this case, the desorption process may be initiated at larger relative vapor pressures than those predicted by the theories of homogeneous cavitation.
Original language | English (US) |
---|---|
Pages (from-to) | 4702-4711 |
Number of pages | 10 |
Journal | Langmuir |
Volume | 28 |
Issue number | 10 |
DOIs | |
State | Published - Mar 13 2012 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- General Materials Science
- Condensed Matter Physics
- Surfaces and Interfaces
- Spectroscopy
- Electrochemistry