TY - GEN
T1 - Motor-Cognitive Virtual Reality Training to Improve Gait and Balance in Young Adults with TBI
AU - Karunakaran, Kiran K.
AU - Pamula, Sai
AU - Ibironke, Oluwaseun
AU - Nolan, Karen J.
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Traumatic Brain Injury (TBI) is one of the leading causes of motor and cognitive deficits in adults, and often results in motor control and balance impairments. Motor deficits include gait dysfunction and decreased postural control & coordination; leading to compromised functional ambulation and reduced quality of life. Research has shown that cognitive (attention and executive) function contributes to motor deficits and recovery. Hence, targeting the motor and the cognitive domains simultaneously by increasing cognitive and motor effort to perform the task may lead to improved ambulation recovery. The objective of this investigation was to evaluate the efficacy of simultaneous motor & cognitive training (MCT) using virtual reality to improve ambulation; assessed using biomechanical, cognitive, and functional outcomes. Preliminary data is presented for three participants with chronic TBI who received MCT. The results show improved cognition, speed, endurance, step length, gait cycle time, static & reactive balance, dual-task performance, and progression towards healthy ambulation. These preliminary results suggest that integrated cognitive motor training has the potential to induce functional recovery in young adults with TBI.Clinical Relevance - Preliminary data provides initial evidence for MCT as a therapeutic intervention for gait and balance rehabilitation in young adults with TBI.
AB - Traumatic Brain Injury (TBI) is one of the leading causes of motor and cognitive deficits in adults, and often results in motor control and balance impairments. Motor deficits include gait dysfunction and decreased postural control & coordination; leading to compromised functional ambulation and reduced quality of life. Research has shown that cognitive (attention and executive) function contributes to motor deficits and recovery. Hence, targeting the motor and the cognitive domains simultaneously by increasing cognitive and motor effort to perform the task may lead to improved ambulation recovery. The objective of this investigation was to evaluate the efficacy of simultaneous motor & cognitive training (MCT) using virtual reality to improve ambulation; assessed using biomechanical, cognitive, and functional outcomes. Preliminary data is presented for three participants with chronic TBI who received MCT. The results show improved cognition, speed, endurance, step length, gait cycle time, static & reactive balance, dual-task performance, and progression towards healthy ambulation. These preliminary results suggest that integrated cognitive motor training has the potential to induce functional recovery in young adults with TBI.Clinical Relevance - Preliminary data provides initial evidence for MCT as a therapeutic intervention for gait and balance rehabilitation in young adults with TBI.
UR - http://www.scopus.com/inward/record.url?scp=85179646938&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85179646938&partnerID=8YFLogxK
U2 - 10.1109/EMBC40787.2023.10341060
DO - 10.1109/EMBC40787.2023.10341060
M3 - Conference contribution
C2 - 38083726
AN - SCOPUS:85179646938
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
BT - 2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023
Y2 - 24 July 2023 through 27 July 2023
ER -