Motor-Cognitive Virtual Reality Training to Improve Gait and Balance in Young Adults with TBI

Kiran K. Karunakaran, Sai Pamula, Oluwaseun Ibironke, Karen J. Nolan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Traumatic Brain Injury (TBI) is one of the leading causes of motor and cognitive deficits in adults, and often results in motor control and balance impairments. Motor deficits include gait dysfunction and decreased postural control & coordination; leading to compromised functional ambulation and reduced quality of life. Research has shown that cognitive (attention and executive) function contributes to motor deficits and recovery. Hence, targeting the motor and the cognitive domains simultaneously by increasing cognitive and motor effort to perform the task may lead to improved ambulation recovery. The objective of this investigation was to evaluate the efficacy of simultaneous motor & cognitive training (MCT) using virtual reality to improve ambulation; assessed using biomechanical, cognitive, and functional outcomes. Preliminary data is presented for three participants with chronic TBI who received MCT. The results show improved cognition, speed, endurance, step length, gait cycle time, static & reactive balance, dual-task performance, and progression towards healthy ambulation. These preliminary results suggest that integrated cognitive motor training has the potential to induce functional recovery in young adults with TBI.Clinical Relevance - Preliminary data provides initial evidence for MCT as a therapeutic intervention for gait and balance rehabilitation in young adults with TBI.

Original languageEnglish (US)
Title of host publication2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350324471
DOIs
StatePublished - 2023
Event45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Sydney, Australia
Duration: Jul 24 2023Jul 27 2023

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023
Country/TerritoryAustralia
CitySydney
Period7/24/237/27/23

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Motor-Cognitive Virtual Reality Training to Improve Gait and Balance in Young Adults with TBI'. Together they form a unique fingerprint.

Cite this