TY - JOUR
T1 - MQGA
T2 - A quantitative analysis of brain network hubs using multi-graph theoretical indices
AU - Wu, Hongzhou
AU - Yang, Zhenzhen
AU - Cao, Qingquan
AU - Wang, Pan
AU - Biswal, Bharat B.
AU - Klugah-Brown, Benjamin
N1 - Publisher Copyright:
© 2024
PY - 2024/12/1
Y1 - 2024/12/1
N2 - Recent advancements in large-scale network studies have shown that connector hubs and provincial hubs are vital for coordinating complex cognitive tasks by facilitating information transfer between and within specialized modules. However, current methods for identifying these hubs often lack standardized measurement criteria, hindering quantitative analysis. This study proposes a novel computational method utilizing multi-graph theoretical index calculations to quantitatively analyze hub attributes in brain networks. Using benchmark network, random simulation network (N = 100), resting fMRI data from the ADHD-200 NYU dataset (HC = 110, ADHD = 146), and the Peking dataset (HC = 120, ADHD = 83), we introduce the Multi-criteria Quantitative Graph Analysis (MQGA) method, which employs betweenness centrality, degree centrality, and participation coefficient to determine the connector (con) hub index and provincial (pro) hub index. The method's accuracy, reliability, and stability were validated through correlation analysis of hub indices and labels, vulnerability tests, and consistency analysis across subjects. Results indicate that as network sparsity increases, the con hub index increases while the pro hub index decreases, with the optimal hub node index at 4 % sparsity. Vulnerability tests revealed that removing con nodes had a greater impact on network integrity than removing pro nodes. Both con and pro exhibited stability in consistency analyses, but con was more stable. The stability of hub scores in disease groups was significantly lower than in the healthy control group. High con values were found in the precuneus, postcentral gyrus, and precentral gyrus, whereas high pro values were identified in the precentral gyrus, postcentral gyrus, superior parietal lobule, precuneus, and superior temporal gyrus. This approach enhances the accuracy and sensitivity of hub node identification, facilitating precise comparisons and producing consistent, replicable results, advancing our understanding of brain network hub nodes, their roles in cognitive processes, and their implications for brain disease research.
AB - Recent advancements in large-scale network studies have shown that connector hubs and provincial hubs are vital for coordinating complex cognitive tasks by facilitating information transfer between and within specialized modules. However, current methods for identifying these hubs often lack standardized measurement criteria, hindering quantitative analysis. This study proposes a novel computational method utilizing multi-graph theoretical index calculations to quantitatively analyze hub attributes in brain networks. Using benchmark network, random simulation network (N = 100), resting fMRI data from the ADHD-200 NYU dataset (HC = 110, ADHD = 146), and the Peking dataset (HC = 120, ADHD = 83), we introduce the Multi-criteria Quantitative Graph Analysis (MQGA) method, which employs betweenness centrality, degree centrality, and participation coefficient to determine the connector (con) hub index and provincial (pro) hub index. The method's accuracy, reliability, and stability were validated through correlation analysis of hub indices and labels, vulnerability tests, and consistency analysis across subjects. Results indicate that as network sparsity increases, the con hub index increases while the pro hub index decreases, with the optimal hub node index at 4 % sparsity. Vulnerability tests revealed that removing con nodes had a greater impact on network integrity than removing pro nodes. Both con and pro exhibited stability in consistency analyses, but con was more stable. The stability of hub scores in disease groups was significantly lower than in the healthy control group. High con values were found in the precuneus, postcentral gyrus, and precentral gyrus, whereas high pro values were identified in the precentral gyrus, postcentral gyrus, superior parietal lobule, precuneus, and superior temporal gyrus. This approach enhances the accuracy and sensitivity of hub node identification, facilitating precise comparisons and producing consistent, replicable results, advancing our understanding of brain network hub nodes, their roles in cognitive processes, and their implications for brain disease research.
KW - ADHD
KW - Connector hub
KW - Graph theory
KW - Provincial hub
KW - Resting-state fMRI
UR - http://www.scopus.com/inward/record.url?scp=85208477190&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85208477190&partnerID=8YFLogxK
U2 - 10.1016/j.neuroimage.2024.120913
DO - 10.1016/j.neuroimage.2024.120913
M3 - Article
C2 - 39489407
AN - SCOPUS:85208477190
SN - 1053-8119
VL - 303
JO - NeuroImage
JF - NeuroImage
M1 - 120913
ER -