Multi-graph sampling of online communities via mean hitting time

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We derive a framework for sampling online communities based on the mean hitting time of its members, considering that there are multiple graphs associated with the same vertex set V representing the social network. First, we formulate random walk models on the multi-graph ensemble and define the essential properties of the mean hitting times associated with the corresponding Markov chains on the vertex set V. Then, we design a branch and bound optimization technique for computing the subset of vertices A that exhibits the shortest mean hitting time across the multi-graph, given a constraint on the size of A. We also design a greedy optimization method that computes an approximation to the optimal subset, at lower complexity, and that lends itself to a decentralized implementation, for further complexity reduction. We examine the performance of the sampling framework through a series of simulation experiments involving synthetic and actual samples of online community graphs. We demonstrate substantial improvements in terms of sampling (network) cost reduction and information dissemination speed relative to the state-of-the-art methods of node degree and eigenvector centrality.

Original languageEnglish (US)
Title of host publication2012 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2012 - Proceedings
Pages3065-3068
Number of pages4
DOIs
StatePublished - 2012
Externally publishedYes
Event2012 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2012 - Kyoto, Japan
Duration: Mar 25 2012Mar 30 2012

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Other

Other2012 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2012
Country/TerritoryJapan
CityKyoto
Period3/25/123/30/12

All Science Journal Classification (ASJC) codes

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Multi-graph sampling of online communities via mean hitting time'. Together they form a unique fingerprint.

Cite this