TY - GEN
T1 - Multi-swarm Genetic Gray Wolf Optimizer with Embedded Autoencoders for High-dimensional Expensive Problems
AU - Bi, Jing
AU - Zhai, Jiahui
AU - Yuan, Haitao
AU - Wang, Ziqi
AU - Qiao, Junfei
AU - Zhang, Jia
AU - Zhou, Meng Chu
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - High-dimensional expensive problems are often encountered in the design and optimization of complex robotic and automated systems and distributed computing systems, and they suffer from a time-consuming fitness evaluation process. It is extremely challenging and difficult to produce promising solutions in a high-dimensional search space. This work proposes an evolutionary optimization framework with embedded autoencoders that effectively solve optimization problems with high-dimensional search space. Autoencoders provide strong dimension reduction and feature extraction abilities that compress a high-dimensional space to an informative low-dimensional one. Search operations are performed in a low-dimensional space, thereby guiding whole population to converge to the optimal solution more efficiently. Multiple subpopulations coevolve iteratively in a distributed manner. One subpopulation is embedded by an autoencoder, and the other one is guided by a newly proposed Multi-swarm Gray-wolf-optimizer based on Genetic-learning (MGG). Thus, the proposed multi-swarm framework is named Autoencoder-based MGG (AMGG). AMGG consists of three proposed strategies that balance exploration and exploitation abilities, i.e., a dynamic subgroup number strategy for reducing the number of subpopulations, a subpopulation reorganization strategy for sharing useful information about each subpopulation, and a purposeful detection strategy for escaping from local optima and improving exploration ability. AMGG is compared with several widely used algorithms by solving benchmark problems and a real-life optimization one. The results well verify that AMGG outperforms its peers in terms of search accuracy and convergence efficiency.
AB - High-dimensional expensive problems are often encountered in the design and optimization of complex robotic and automated systems and distributed computing systems, and they suffer from a time-consuming fitness evaluation process. It is extremely challenging and difficult to produce promising solutions in a high-dimensional search space. This work proposes an evolutionary optimization framework with embedded autoencoders that effectively solve optimization problems with high-dimensional search space. Autoencoders provide strong dimension reduction and feature extraction abilities that compress a high-dimensional space to an informative low-dimensional one. Search operations are performed in a low-dimensional space, thereby guiding whole population to converge to the optimal solution more efficiently. Multiple subpopulations coevolve iteratively in a distributed manner. One subpopulation is embedded by an autoencoder, and the other one is guided by a newly proposed Multi-swarm Gray-wolf-optimizer based on Genetic-learning (MGG). Thus, the proposed multi-swarm framework is named Autoencoder-based MGG (AMGG). AMGG consists of three proposed strategies that balance exploration and exploitation abilities, i.e., a dynamic subgroup number strategy for reducing the number of subpopulations, a subpopulation reorganization strategy for sharing useful information about each subpopulation, and a purposeful detection strategy for escaping from local optima and improving exploration ability. AMGG is compared with several widely used algorithms by solving benchmark problems and a real-life optimization one. The results well verify that AMGG outperforms its peers in terms of search accuracy and convergence efficiency.
UR - http://www.scopus.com/inward/record.url?scp=85168673001&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85168673001&partnerID=8YFLogxK
U2 - 10.1109/ICRA48891.2023.10161299
DO - 10.1109/ICRA48891.2023.10161299
M3 - Conference contribution
AN - SCOPUS:85168673001
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 7265
EP - 7271
BT - Proceedings - ICRA 2023
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2023 IEEE International Conference on Robotics and Automation, ICRA 2023
Y2 - 29 May 2023 through 2 June 2023
ER -