TY - JOUR
T1 - Multiple Regions of Nonthermal Quasiperiodic Pulsations during the Impulsive Phase of a Solar Flare
AU - Luo, Yingjie
AU - Chen, Bin
AU - Yu, Sijie
AU - Battaglia, Marina
AU - Sharma, Rohit
N1 - Publisher Copyright:
© 2022. The Author(s). Published by the American Astronomical Society.
PY - 2022/12/1
Y1 - 2022/12/1
N2 - Flare-associated quasiperiodic pulsations (QPPs) in radio and X-ray wavelengths, particularly those related to nonthermal electrons, contain important information about the energy release and transport processes during flares. However, the paucity of spatially resolved observations of such QPPs with a fast time cadence has been an obstacle for us to further understand their physical nature. Here, we report observations of such a QPP event that occurred during the impulsive phase of a C1.8-class eruptive solar flare using radio imaging spectroscopy data from the Karl G. Jansky Very Large Array (VLA) and complementary X-ray imaging and spectroscopy data. The radio QPPs, observed by the VLA in the 1-2 GHz with a subsecond cadence, are shown as three spatially distinct sources with different physical characteristics. Two radio sources are located near the conjugate footpoints of the erupting magnetic flux rope with opposite senses of polarization. One of the sources displays a QPP behavior with a ∼5 s period. The third radio source, located at the top of the postflare arcade, coincides with the location of an X-ray source and shares a similar period of ∼25-45 s. We show that the two oppositely polarized radio sources are likely due to coherent electron cyclotron maser emission. On the other hand, the looptop QPP source, observed in both radio and X-rays, is consistent with incoherent gyrosynchrotron and bremsstrahlung emission, respectively. We conclude that the concurrent, but spatially distinct QPP sources must involve multiple mechanisms which operate in different magnetic loop systems and at different periods.
AB - Flare-associated quasiperiodic pulsations (QPPs) in radio and X-ray wavelengths, particularly those related to nonthermal electrons, contain important information about the energy release and transport processes during flares. However, the paucity of spatially resolved observations of such QPPs with a fast time cadence has been an obstacle for us to further understand their physical nature. Here, we report observations of such a QPP event that occurred during the impulsive phase of a C1.8-class eruptive solar flare using radio imaging spectroscopy data from the Karl G. Jansky Very Large Array (VLA) and complementary X-ray imaging and spectroscopy data. The radio QPPs, observed by the VLA in the 1-2 GHz with a subsecond cadence, are shown as three spatially distinct sources with different physical characteristics. Two radio sources are located near the conjugate footpoints of the erupting magnetic flux rope with opposite senses of polarization. One of the sources displays a QPP behavior with a ∼5 s period. The third radio source, located at the top of the postflare arcade, coincides with the location of an X-ray source and shares a similar period of ∼25-45 s. We show that the two oppositely polarized radio sources are likely due to coherent electron cyclotron maser emission. On the other hand, the looptop QPP source, observed in both radio and X-rays, is consistent with incoherent gyrosynchrotron and bremsstrahlung emission, respectively. We conclude that the concurrent, but spatially distinct QPP sources must involve multiple mechanisms which operate in different magnetic loop systems and at different periods.
UR - http://www.scopus.com/inward/record.url?scp=85143689909&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85143689909&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ac997a
DO - 10.3847/1538-4357/ac997a
M3 - Article
AN - SCOPUS:85143689909
SN - 0004-637X
VL - 940
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 137
ER -