Multitrace/singletrace formulations and Domain Decomposition Methods for the solution of Helmholtz transmission problems for bounded composite scatterers

Carlos Jerez-Hanckes, Carlos Pérez-Arancibia, Catalin Turc

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

We present Nyström discretizations of multitrace/singletrace formulations and non-overlapping Domain Decomposition Methods (DDM) for the solution of Helmholtz transmission problems for bounded composite scatterers with piecewise constant material properties. We investigate the performance of DDM with both classical Robin and optimized transmission boundary conditions. The optimized transmission boundary conditions incorporate square root Fourier multiplier approximations of Dirichlet to Neumann operators. While the multitrace/singletrace formulations as well as the DDM that use classical Robin transmission conditions are not particularly well suited for Krylov subspace iterative solutions of high-contrast high-frequency Helmholtz transmission problems, we provide ample numerical evidence that DDM with optimized transmission conditions constitute efficient computational alternatives for these type of applications. In the case of large numbers of subdomains with different material properties, we show that the associated DDM linear system can be efficiently solved via hierarchical Schur complements elimination.

Original languageEnglish (US)
Pages (from-to)343-360
Number of pages18
JournalJournal of Computational Physics
Volume350
DOIs
StatePublished - Dec 1 2017

All Science Journal Classification (ASJC) codes

  • Numerical Analysis
  • Modeling and Simulation
  • Physics and Astronomy (miscellaneous)
  • General Physics and Astronomy
  • Computer Science Applications
  • Computational Mathematics
  • Applied Mathematics

Keywords

  • Domain decomposition methods
  • Multiple junctions
  • Multitrace formulations
  • Single trace formulations

Fingerprint

Dive into the research topics of 'Multitrace/singletrace formulations and Domain Decomposition Methods for the solution of Helmholtz transmission problems for bounded composite scatterers'. Together they form a unique fingerprint.

Cite this