Abstract
Summary form only given, as follows. An adaptive, neural network strategy is described for the control of a dynamic, locomotive system, in particular a one-legged hopping robot. The control task is to make corrections to the motion of the robot that serve to maintain a fixed level of energy (and minimize energy losses). While for many dynamic systems energy conservation may not be a key control criterion, legged locomotion is an energy intensive activity, implying that energy conservation is a primary issue in control considerations. The authors effect the control of the robot by the use of an artificial neural network (ANN) with a continuous learning memory. Results are presented in the form of computer simulations that demonstrate the ANN's ability to devise proper control signals that will develop a stable hopping strategy using imprecise knowledge of the current state of the robotic leg.
Original language | English (US) |
---|---|
Pages | 621 |
Number of pages | 1 |
State | Published - 1989 |
Externally published | Yes |
Event | IJCNN International Joint Conference on Neural Networks - Washington, DC, USA Duration: Jun 18 1989 → Jun 22 1989 |
Other
Other | IJCNN International Joint Conference on Neural Networks |
---|---|
City | Washington, DC, USA |
Period | 6/18/89 → 6/22/89 |
All Science Journal Classification (ASJC) codes
- General Engineering