Abstract
Organic compounds that undergo strong nonlinear, multiphoton absorption have been gaining greater interest, mainly in the developing fields of multiphoton fluorescence imaging, optical data storage, 3-D microfabrication, and photodynamic therapy. Systematic studies have shown that conjugated organic molecules with large delocalized π electron systems show very large nonlinear optical effects. Two-photon absorbing chromophores have also been incorporated into dendrimers to increase two-photon absorptivity. A cooperative enhancement of two-photon absorption (2PA) has been observed, such as in the linkage of branched chromophores through a common amine group and chromophore-metal complexes. This enhancement may be related to extensive two-dimensional π-delocalization in these molecules. Herein, we describe the synthesis, structural characterization and photophysical study of a series of compounds (model, oligomer, and polymer) with symmetric molecular structure of the D-π-D motif and branched D-π-D dendrimeric structures based on substituted fluorene derivatives. Femtosecond 2PA cross sections were very large for some derivatives (over 10,000 GM) and often exhibited substantial solvent effects.
Original language | English (US) |
---|---|
Pages (from-to) | 173-180 |
Number of pages | 8 |
Journal | Proceedings of SPIE - The International Society for Optical Engineering |
Volume | 5351 |
DOIs | |
State | Published - 2004 |
Externally published | Yes |
Event | Organic Photonic Materials and Devices VI - San Jose, CA, United States Duration: Jan 27 2004 → Jan 29 2004 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Computer Science Applications
- Applied Mathematics
- Electrical and Electronic Engineering
Keywords
- Molecular symmetry
- Nonlinear optical effects
- Organic chromophores
- Two-photon absorption