Abstract
The fifth generation (5G) of cellular systems is introducing ultra-reliable low-latency communication (URLLC) services alongside more conventional enhanced Mobile BroadBand (eMBB) traffic. Furthermore, the 5G cellular architecture is evolving from a base station-centric deployment to a fog-like setup that accommodates a flexible functional split between cloud and edge. In this paper, a novel solution is proposed that enables the non-orthogonal coexistence of URLLC and eMBB services by processing URLLC traffic at the edge nodes, while eMBB communications are handled centrally at a cloud processor as in a cloud-radio access network system. This solution guarantees the low-latency requirements of the URLLC service by means of edge processing, e.g., for vehicle-to-cellular use cases, as well as the high-spectral efficiency for eMBB traffic via centralized baseband processing. Both uplink and downlink are analyzed by accounting for the heterogeneous performance requirements of eMBB and URLLC traffic and by considering practical aspects, such as fading, the lack of channel state information for URLLC transmitters, rate adaptation for eMBB transmitters, finite fronthaul capacity, and different coexistence strategies, such as puncturing.
Original language | English (US) |
---|---|
Article number | 8612914 |
Pages (from-to) | 13035-13049 |
Number of pages | 15 |
Journal | IEEE Access |
Volume | 7 |
DOIs | |
State | Published - 2019 |
All Science Journal Classification (ASJC) codes
- General Computer Science
- General Materials Science
- General Engineering
Keywords
- 5G
- C-RAN
- F-RAN
- NOMA
- URLLC
- eMBB
- fog networking