TY - JOUR
T1 - Nonlinear dynamics of core-annular film flows in the presence of surfactant
AU - Kas-Danouche, S. A.
AU - Papageorgiou, D. T.
AU - Siegel, M.
N1 - Funding Information:
SAK wishes to thank the Consejo de Investigación of Universidad de Oriente (grant number CI-2-010301-1277/06). The work of DTP was supported in part by the National Science Foundation (NSF; grant number DMS-0072228). The work of MS was supported by the National Science Foundation (grant number DMS-0354560). In addition the authors acknowledge the NSF grant MRI DMS-0420590 for computing resources.
PY - 2009
Y1 - 2009
N2 - The nonlinear stability of two-phase core-annular flow in a cylindrical pipe is studied. A constant pressure gradient drives the flow of two immiscible liquids of different viscosities and equal densities, and surface tension acts at the interface separating the phases. Insoluble surfactants are included, and we assess their effect on the flow stability and ensuing spatio-temporal dynamics. We achieve this by developing an asymptotic analysis in the limit of a thin annular layer - which is usually the relevant regime in applications - to derive a coupled system of nonlinear evolution equations that govern the dynamics of the interface and the local surfactant concentration on it. In the absence of surfactants the system reduces to the Kuramoto - Sivashinsky (KS) equation, and its modifications due to viscosity stratification (present when the phases have unequal viscosities) are derived elsewhere. We report on extensive numerical experiments to evaluate the effect of surfactants on KS dynamics (including chaotic states, for example), in both the absence and the presence of viscosity stratification. We find that chaos is suppressed in the absence of viscosity differences and that the new flow consists of successive windows (in parameter space) of steady-state travelling waves separated by time-periodic attractors. The intricate structure of the travelling pulses is also explained physically. When viscosity stratification is present we observe a transition from time-periodic dynamics, for instance, to steady-state travelling wave pulses of increasing amplitudes and speeds. Numerical evidence is presented that indicates that the transition occurs through a reverse Feigenbaum cascade in phase space.
AB - The nonlinear stability of two-phase core-annular flow in a cylindrical pipe is studied. A constant pressure gradient drives the flow of two immiscible liquids of different viscosities and equal densities, and surface tension acts at the interface separating the phases. Insoluble surfactants are included, and we assess their effect on the flow stability and ensuing spatio-temporal dynamics. We achieve this by developing an asymptotic analysis in the limit of a thin annular layer - which is usually the relevant regime in applications - to derive a coupled system of nonlinear evolution equations that govern the dynamics of the interface and the local surfactant concentration on it. In the absence of surfactants the system reduces to the Kuramoto - Sivashinsky (KS) equation, and its modifications due to viscosity stratification (present when the phases have unequal viscosities) are derived elsewhere. We report on extensive numerical experiments to evaluate the effect of surfactants on KS dynamics (including chaotic states, for example), in both the absence and the presence of viscosity stratification. We find that chaos is suppressed in the absence of viscosity differences and that the new flow consists of successive windows (in parameter space) of steady-state travelling waves separated by time-periodic attractors. The intricate structure of the travelling pulses is also explained physically. When viscosity stratification is present we observe a transition from time-periodic dynamics, for instance, to steady-state travelling wave pulses of increasing amplitudes and speeds. Numerical evidence is presented that indicates that the transition occurs through a reverse Feigenbaum cascade in phase space.
UR - http://www.scopus.com/inward/record.url?scp=67650928356&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67650928356&partnerID=8YFLogxK
U2 - 10.1017/S0022112009006430
DO - 10.1017/S0022112009006430
M3 - Article
AN - SCOPUS:67650928356
SN - 0022-1120
VL - 626
SP - 415
EP - 448
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
ER -