Numerical simulations of electric field driven self-assembly of monolayers of mixtures of nanoparticles

E. Amah, N. Musunuri, Ian S. Fischer, Pushpendra Singh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We numerically study the process of self-assembly of particle mixtures on fluid-liquid interfaces when an electric field is applied in the direction normal to the interface. The force law for the dependence of the electric field induced dipole-dipole and capillary forces on the distance between the particles and their physical properties obtained in an earlier study by performing direct numerical simulations is used for conducting simulations. The inter-particle forces cause mixtures of nanoparticles to selfassemble into molecular-like hierarchical arrangements consisting of composite particles which are organized in a pattern. However, there is a critical electric intensity value below which particles move under the influence of Brownian forces and do not self-assemble. Above the critical value, when the particles sizes differed by a factor of two or more, the composite particle has a larger particle at its core and several smaller particles forming a ring around it. Approximately same sized particles, when their concentrations are approximately equal, form binary particles or chains (analogous to polymeric molecules) in which positively and negatively polarized particles alternate, but when their concentrations differ the particles whose concentration is larger form rings around the particles with smaller concentration.

Original languageEnglish (US)
Title of host publicationSymposia
Subtitle of host publicationFluid Measurement and Instrumentation; Fluid Dynamics of Wind Energy; Renewable and Sustainable Energy Conversion; Energy and Process Engineering; Microfluidics and Nanofluidics; Development and Applications in Computational Fluid Dynamics; DNS/LES and Hybrid RANS/LES Methods
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791858059
DOIs
StatePublished - 2017
EventASME 2017 Fluids Engineering Division Summer Meeting, FEDSM 2017 - Waikoloa, United States
Duration: Jul 30 2017Aug 3 2017

Publication series

NameAmerican Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
Volume1B-2017
ISSN (Print)0888-8116

Other

OtherASME 2017 Fluids Engineering Division Summer Meeting, FEDSM 2017
Country/TerritoryUnited States
CityWaikoloa
Period7/30/178/3/17

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Numerical simulations of electric field driven self-assembly of monolayers of mixtures of nanoparticles'. Together they form a unique fingerprint.

Cite this