TY - GEN
T1 - Numerical simulations of electric field driven self-assembly of monolayers of mixtures of nanoparticles
AU - Amah, E.
AU - Musunuri, N.
AU - Fischer, Ian S.
AU - Singh, Pushpendra
N1 - Publisher Copyright:
© Copyright 2017 ASME.
PY - 2017
Y1 - 2017
N2 - We numerically study the process of self-assembly of particle mixtures on fluid-liquid interfaces when an electric field is applied in the direction normal to the interface. The force law for the dependence of the electric field induced dipole-dipole and capillary forces on the distance between the particles and their physical properties obtained in an earlier study by performing direct numerical simulations is used for conducting simulations. The inter-particle forces cause mixtures of nanoparticles to selfassemble into molecular-like hierarchical arrangements consisting of composite particles which are organized in a pattern. However, there is a critical electric intensity value below which particles move under the influence of Brownian forces and do not self-assemble. Above the critical value, when the particles sizes differed by a factor of two or more, the composite particle has a larger particle at its core and several smaller particles forming a ring around it. Approximately same sized particles, when their concentrations are approximately equal, form binary particles or chains (analogous to polymeric molecules) in which positively and negatively polarized particles alternate, but when their concentrations differ the particles whose concentration is larger form rings around the particles with smaller concentration.
AB - We numerically study the process of self-assembly of particle mixtures on fluid-liquid interfaces when an electric field is applied in the direction normal to the interface. The force law for the dependence of the electric field induced dipole-dipole and capillary forces on the distance between the particles and their physical properties obtained in an earlier study by performing direct numerical simulations is used for conducting simulations. The inter-particle forces cause mixtures of nanoparticles to selfassemble into molecular-like hierarchical arrangements consisting of composite particles which are organized in a pattern. However, there is a critical electric intensity value below which particles move under the influence of Brownian forces and do not self-assemble. Above the critical value, when the particles sizes differed by a factor of two or more, the composite particle has a larger particle at its core and several smaller particles forming a ring around it. Approximately same sized particles, when their concentrations are approximately equal, form binary particles or chains (analogous to polymeric molecules) in which positively and negatively polarized particles alternate, but when their concentrations differ the particles whose concentration is larger form rings around the particles with smaller concentration.
UR - http://www.scopus.com/inward/record.url?scp=85033607119&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85033607119&partnerID=8YFLogxK
U2 - 10.1115/FEDSM2017-69380
DO - 10.1115/FEDSM2017-69380
M3 - Conference contribution
AN - SCOPUS:85033607119
T3 - American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
BT - Symposia
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2017 Fluids Engineering Division Summer Meeting, FEDSM 2017
Y2 - 30 July 2017 through 3 August 2017
ER -