TY - GEN
T1 - Observations of acoustic emissions in a hydraulically loaded granite specimen
AU - Li, B. Q.
AU - Moradian, Z.
AU - Gonçalves Da Silva, B.
AU - Germaine, J. T.
N1 - Publisher Copyright:
Copyright 2015 ARMA, American Rock Mechanics Association.
PY - 2015
Y1 - 2015
N2 - Hydraulic fracturing has become increasingly prevalent in the oil and gas industry as well as in enhanced geothermal systems as a method to increase the permeability of rock masses. However, the process is still not very well understood in terms of the fracture mechanisms that occur as cracks initiate, propagate and coalesce. Laboratory tests can be useful in this regard as they provide insights into fracture behaviour during hydraulic loading under controlled conditions. This paper describes the development of an acoustic emissions setup capable of capturing a stream of data over approximately five seconds corresponding to crack initiation and propagation. The AE setup was used in a series of hydraulic fracturing experiments on granite specimens. It was found that for one particular specimen, few emissions were observed until the applied water pressure reached 90% of the failure pressure. After this point it was observed that low energy emissions were produced at a constant rate until approximately 0.1s before failure, whereupon a series of higher energy emissions occur. These higher energy emissions were compared to high speed video taken at 15 000 fps, and it was observed that significant local white patching (microcracking) occurred in this time period. Finally, crack initiation appears to be related to the onset of a high amplitude emission with a duration of 0.3s, as observed using high speed video.
AB - Hydraulic fracturing has become increasingly prevalent in the oil and gas industry as well as in enhanced geothermal systems as a method to increase the permeability of rock masses. However, the process is still not very well understood in terms of the fracture mechanisms that occur as cracks initiate, propagate and coalesce. Laboratory tests can be useful in this regard as they provide insights into fracture behaviour during hydraulic loading under controlled conditions. This paper describes the development of an acoustic emissions setup capable of capturing a stream of data over approximately five seconds corresponding to crack initiation and propagation. The AE setup was used in a series of hydraulic fracturing experiments on granite specimens. It was found that for one particular specimen, few emissions were observed until the applied water pressure reached 90% of the failure pressure. After this point it was observed that low energy emissions were produced at a constant rate until approximately 0.1s before failure, whereupon a series of higher energy emissions occur. These higher energy emissions were compared to high speed video taken at 15 000 fps, and it was observed that significant local white patching (microcracking) occurred in this time period. Finally, crack initiation appears to be related to the onset of a high amplitude emission with a duration of 0.3s, as observed using high speed video.
UR - http://www.scopus.com/inward/record.url?scp=84964931727&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84964931727&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84964931727
T3 - 49th US Rock Mechanics / Geomechanics Symposium 2015
SP - 2206
EP - 2212
BT - 49th US Rock Mechanics / Geomechanics Symposium 2015
PB - American Rock Mechanics Association (ARMA)
T2 - 49th US Rock Mechanics / Geomechanics Symposium
Y2 - 29 June 2015 through 1 July 2015
ER -