Abstract
In the present study, 40 freshwater sediments collected near 14 wastewater treatment plants (WWTPs) across the United States were analyzed for eight N-nitrosamines by liquid chromatography-tandem mass spectrometry (LC–MS/MS). Three N-nitrosamines were detected for the first time in freshwater sediments in units of ng/g dry weight at the specified detection frequency: N-nitrosodibutylamine (NDBA; 0.2–3.3; 58%), N-nitrosodiphenylamine (NDPhA; 0.2–4.7; 50%), and N-nitrosopyrrolidine (NPYR; 3.4–19.6; 18%). At least one N-nitrosamine was detected in 70% (28/40) of sediments analyzed. Non-detect values in units of ng/g dw were obtained for N-nitrosodimethylamine (NDMA; <10.2), N-nitrosomethylethylamine (NMEA; <1.7), N-nitrosodiethylamine (NDEA; <3.9), N-nitroso-di-n-propylamine (NDPA; <1.7), and N-nitrosopiperidine (NPIP; <3.6). Principal component analysis specifically points to two of multiple potential pathways explaining N-nitrosamine occurrences in sediment: NDBA and NDPhA were positively correlated with bulk water ammonia and pH levels, and NPYR with sediment content of organic carbon and iron. Interestingly, N-nitrosamine occurrences up- and downstream of WWTPs were statistically indistinguishable (p > 0.05). This is the first report on the occurrence of the carcinogenic N-nitrosamines NDBA, NDPhA, and NPYR in U.S. freshwater sediments. Discovery of this phenomenon warrants further research on the compounds’ origin, environmental persistence, aquatic toxicity, and risks posed.
Original language | English (US) |
---|---|
Pages (from-to) | 109-115 |
Number of pages | 7 |
Journal | Journal of Hazardous Materials |
Volume | 323 |
DOIs | |
State | Published - Feb 5 2017 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Environmental Engineering
- Environmental Chemistry
- Waste Management and Disposal
- Pollution
- Health, Toxicology and Mutagenesis
Keywords
- Environmental fate
- N-Nitrosamine
- Sediment contamination
- Wastewater treatment plant