Abstract
Biological and physical systems often exhibit distinct structures at different spatial/temporal scales. Persistent homology is an algebraic tool that provides a mathematical framework for analyzing the multi-scale structures frequently observed in nature. In this paper a theoretical framework for the algorithmic computation of an arbitrarily good approximation of the persistent homology is developed. We study the filtrations generated by sub-level sets of a function f: X → R, where X is a CW-complex. In the special case X = [0, 1]N, N ∈ N, we discuss implementation of the proposed algorithms. We also investigate a priori and a posteriori bounds of the approximation error introduced by our method.
Original language | English (US) |
---|---|
Pages (from-to) | 1887-1912 |
Number of pages | 26 |
Journal | Mathematics of Computation |
Volume | 86 |
Issue number | 306 |
DOIs | |
State | Published - 2017 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Algebra and Number Theory
- Computational Mathematics
- Applied Mathematics