TY - GEN
T1 - On attribution of recurrent neural network predictions via additive decomposition
AU - Du, Mengnan
AU - Liu, Ninghao
AU - Yang, Fan
AU - Ji, Shuiwang
AU - Hu, Xia
N1 - Publisher Copyright:
© 2019 IW3C2 (International World Wide Web Conference Committee), published under Creative Commons CC-BY 4.0 License.
PY - 2019/5/13
Y1 - 2019/5/13
N2 - RNN models have achieved the state-of-the-art performance in a wide range of text mining tasks. However, these models are often regarded as black-boxes and are criticized due to the lack of interpretability. In this paper, we enhance the interpretability of RNNs by providing interpretable rationales for RNN predictions. Nevertheless, interpreting RNNs is a challenging problem. Firstly, unlike existing methods that rely on local approximation, we aim to provide rationales that are more faithful to the decision making process of RNN models. Secondly, a flexible interpretation method should be able to assign contribution scores to text segments of varying lengths, instead of only to individual words. To tackle these challenges, we propose a novel attribution method, called REAT, to provide interpretations to RNN predictions. REAT decomposes the final prediction of a RNN into additive contribution of each word in the input text. This additive decomposition enables REAT to further obtain phrase-level attribution scores. In addition, REAT is generally applicable to various RNN architectures, including GRU, LSTM and their bidirectional versions. Experimental results demonstrate the faithfulness and interpretability of the proposed attribution method. Comprehensive analysis shows that our attribution method could unveil the useful linguistic knowledge captured by RNNs. Some analysis further demonstrates our method could be utilized as a debugging tool to examine the vulnerability and failure reasons of RNNs, which may lead to several promising future directions to promote generalization ability of RNNs.
AB - RNN models have achieved the state-of-the-art performance in a wide range of text mining tasks. However, these models are often regarded as black-boxes and are criticized due to the lack of interpretability. In this paper, we enhance the interpretability of RNNs by providing interpretable rationales for RNN predictions. Nevertheless, interpreting RNNs is a challenging problem. Firstly, unlike existing methods that rely on local approximation, we aim to provide rationales that are more faithful to the decision making process of RNN models. Secondly, a flexible interpretation method should be able to assign contribution scores to text segments of varying lengths, instead of only to individual words. To tackle these challenges, we propose a novel attribution method, called REAT, to provide interpretations to RNN predictions. REAT decomposes the final prediction of a RNN into additive contribution of each word in the input text. This additive decomposition enables REAT to further obtain phrase-level attribution scores. In addition, REAT is generally applicable to various RNN architectures, including GRU, LSTM and their bidirectional versions. Experimental results demonstrate the faithfulness and interpretability of the proposed attribution method. Comprehensive analysis shows that our attribution method could unveil the useful linguistic knowledge captured by RNNs. Some analysis further demonstrates our method could be utilized as a debugging tool to examine the vulnerability and failure reasons of RNNs, which may lead to several promising future directions to promote generalization ability of RNNs.
KW - Deep learning interpretation
KW - Recurrent neural network
KW - Sentiment analysis
KW - Text classification
UR - http://www.scopus.com/inward/record.url?scp=85066887124&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85066887124&partnerID=8YFLogxK
U2 - 10.1145/3308558.3313545
DO - 10.1145/3308558.3313545
M3 - Conference contribution
AN - SCOPUS:85066887124
T3 - The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019
SP - 383
EP - 393
BT - The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019
PB - Association for Computing Machinery, Inc
T2 - 2019 World Wide Web Conference, WWW 2019
Y2 - 13 May 2019 through 17 May 2019
ER -