TY - GEN
T1 - On fixed-path variable-bandwidth scheduling in high-performance networks
AU - Zuo, Liudong
AU - Khaleel, Mustafa
AU - Zhu, Michelle M.
AU - Wu, Chase Qishi
PY - 2013
Y1 - 2013
N2 - Many extreme-scale scientific applications are distributed in nature and oftentimes need to move vast amounts of data between multiple locations for various remote operations. Such applications require fast and reliable data transfer services with guaranteed finish time, which can be realized by making bandwidth reservation for dedicated channel provisioning in high-performance networks. From an individual perspective, a user always wishes to achieve the earliest finish time for a given data transfer request that typically specifies the maximum Local Area Network (LAN) bandwidth constraint, the data size, data available time, and the deadline. From a global perspective, the network service provider would attempt to serve as many users' bandwidth reservation requests (BRRs) as possible to maximize the overall network resource utilization and throughput. As for the high-performance network consuming vast amounts energy and network resources, the network service provider would also want to process BRRs efficiently to save energy, network resource and the network maintenance cost. These goals are potentially conflictive and require a careful design of the bandwidth reservation and scheduling algorithm. In this paper, we focus on one particular type of scheduling problem under the constraint of fixed path and varying bandwidth (FPVB), which has been proven to be NP-complete in the literature. We develop two heuristic algorithms, namely Least Available Bandwidth of Edge (LABE) and Largest Available Bandwidth of Path (LABP), to solve this problem and conduct simulation-based performance evaluation. The extensive simulation results illustrate the superiority of these proposed algorithms in terms of execution time, success ratio, and average data transfer completion time of BRRs in comparison with two existing scheduling algorithms.
AB - Many extreme-scale scientific applications are distributed in nature and oftentimes need to move vast amounts of data between multiple locations for various remote operations. Such applications require fast and reliable data transfer services with guaranteed finish time, which can be realized by making bandwidth reservation for dedicated channel provisioning in high-performance networks. From an individual perspective, a user always wishes to achieve the earliest finish time for a given data transfer request that typically specifies the maximum Local Area Network (LAN) bandwidth constraint, the data size, data available time, and the deadline. From a global perspective, the network service provider would attempt to serve as many users' bandwidth reservation requests (BRRs) as possible to maximize the overall network resource utilization and throughput. As for the high-performance network consuming vast amounts energy and network resources, the network service provider would also want to process BRRs efficiently to save energy, network resource and the network maintenance cost. These goals are potentially conflictive and require a careful design of the bandwidth reservation and scheduling algorithm. In this paper, we focus on one particular type of scheduling problem under the constraint of fixed path and varying bandwidth (FPVB), which has been proven to be NP-complete in the literature. We develop two heuristic algorithms, namely Least Available Bandwidth of Edge (LABE) and Largest Available Bandwidth of Path (LABP), to solve this problem and conduct simulation-based performance evaluation. The extensive simulation results illustrate the superiority of these proposed algorithms in terms of execution time, success ratio, and average data transfer completion time of BRRs in comparison with two existing scheduling algorithms.
UR - http://www.scopus.com/inward/record.url?scp=84893460016&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84893460016&partnerID=8YFLogxK
U2 - 10.1109/GreenCom-iThings-CPSCom.2013.30
DO - 10.1109/GreenCom-iThings-CPSCom.2013.30
M3 - Conference contribution
AN - SCOPUS:84893460016
SN - 9780769550466
T3 - Proceedings - 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, GreenCom-iThings-CPSCom 2013
SP - 23
EP - 30
BT - Proceedings - 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, GreenCom-iThings-CPSCom 2013
T2 - 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, GreenCom-iThings-CPSCom 2013
Y2 - 20 August 2013 through 23 August 2013
ER -