On mitigating TCP Incast in Data Center Networks

Yan Zhang, Nirwan Ansari

Research output: Chapter in Book/Report/Conference proceedingConference contribution

54 Scopus citations

Abstract

TCP Incast, also known as TCP throughput collapse, is a term used to describe a link capacity under-utilization phenomenon in certain many-to-one communication patterns, typically in many datacenter applications. The main root cause of TCP Incast analyzed by prior works is attributed to packet drops at the congestion switch that result in TCP timeout. Congestion control algorithms have been developed to reduce or eliminate packet drops at the congestion switch. In this paper, the performance of Quantized Congestion Notification (QCN) with respect to the TCP incast problem during data access from clustered servers in datacenters are investigated. QCN can effectively control link rates very rapidly in a datacenter environment. However, it performs poorly when TCP Incast is observed. To explain this low link utilization, we examine the rate fluctuation of different flows within one synchronous reading request, and find that the poor performance of TCP throughput with QCN is due to the rate unfairness of different flows. Therefore, an enhanced QCN congestion control algorithm, called fair Quantized Congestion Notification (FQCN), is proposed to improve fairness of multiple flows sharing one bottleneck link. We evaluate the performance of FQCN as compared to that of QCN in terms of fairness and convergence with four simultaneous and eight staggered source flows. As compared to QCN, fairness is improved greatly and the queue length at the bottleneck link converges to the equilibrium queue length very fast. The effects of FQCN to TCP throughput collapse are also investigated. Simulation results show that FQCN significantly enhances TCP throughput performance in a TCP Incast setup.

Original languageEnglish (US)
Title of host publication2011 Proceedings IEEE INFOCOM
Pages51-55
Number of pages5
DOIs
StatePublished - 2011
EventIEEE INFOCOM 2011 - Shanghai, China
Duration: Apr 10 2011Apr 15 2011

Publication series

NameProceedings - IEEE INFOCOM
ISSN (Print)0743-166X

Other

OtherIEEE INFOCOM 2011
Country/TerritoryChina
CityShanghai
Period4/10/114/15/11

All Science Journal Classification (ASJC) codes

  • General Computer Science
  • Electrical and Electronic Engineering

Keywords

  • Data Center Networks (DCN)
  • Quantized Congestion Notification (QCN)
  • TCP Incast
  • TCP throughput collapse
  • congestion control
  • fairness

Fingerprint

Dive into the research topics of 'On mitigating TCP Incast in Data Center Networks'. Together they form a unique fingerprint.

Cite this