On the gating of mechanosensitive channels by fluid shear stress

Zhangli Peng, On Shun Pak, Zhe Feng, Allen P. Liu, Yuan Nan Young

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


Mechanosensation is an important process in biological fluid–structure interaction. To understand the biophysics underlying mechanosensation, it is essential to quantify the correlation between membrane deformation, membrane tension, external fluid shear stress, and conformation of mechanosensitive (MS) channels. Smoothed dissipative particle dynamics (SDPD) simulations of vesicle/cell in three types of flow configurations are conducted to calculate the tension in lipid membrane due to fluid shear stress from the surrounding viscous flow. In combination with a simple continuum model for an MS channel, SDPD simulation results suggest that shearing adhered vesicles/cells is more effective to induce membrane tension sufficient to stretch MS channels open than a free shear flow or a constrictive channel flow. In addition, we incorporate the bilayer–cytoskeletal interaction in a two-component model to probe the effects of a cytoskeletal network on the gating of MS channels.

Original languageEnglish (US)
Pages (from-to)1012-1022
Number of pages11
JournalActa Mechanica Sinica/Lixue Xuebao
Issue number6
StatePublished - Dec 1 2016

All Science Journal Classification (ASJC) codes

  • Computational Mechanics
  • Mechanical Engineering


  • Fluid-lipid membrane interaction
  • Mechanosensitive channels
  • Membrane tension
  • Viscous flow


Dive into the research topics of 'On the gating of mechanosensitive channels by fluid shear stress'. Together they form a unique fingerprint.

Cite this