Ontology-based Interpretable Machine Learning for Textual Data

Phung Lai, Nhat Hai Phan, Han Hu, Anuja Badeti, David Newman, Dejing Dou

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we introduce a novel interpreting framework that learns an interpretable model based on an ontology-based sampling technique to explain agnostic prediction models. Different from existing approaches, our algorithm considers contextual correlation among words, described in domain knowledge ontologies, to generate semantic explanations. To narrow down the search space for explanations, which is a major problem of long and complicated text data, we design a learnable anchor algorithm, to better extract explanations locally. A set of regulations is further introduced, regarding combining learned interpretable representations with anchors to generate comprehensible semantic explanations. An extensive experiment conducted on two real-world datasets shows that our approach generates more precise and insightful explanations compared with baseline approaches.

Original languageEnglish (US)
Title of host publication2020 International Joint Conference on Neural Networks, IJCNN 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728169262
DOIs
StatePublished - Jul 2020
Event2020 International Joint Conference on Neural Networks, IJCNN 2020 - Virtual, Glasgow, United Kingdom
Duration: Jul 19 2020Jul 24 2020

Publication series

NameProceedings of the International Joint Conference on Neural Networks

Conference

Conference2020 International Joint Conference on Neural Networks, IJCNN 2020
Country/TerritoryUnited Kingdom
CityVirtual, Glasgow
Period7/19/207/24/20

All Science Journal Classification (ASJC) codes

  • Software
  • Artificial Intelligence

Keywords

  • anchor
  • information extraction
  • interpretable machine learning
  • natural language processing
  • ontology

Fingerprint

Dive into the research topics of 'Ontology-based Interpretable Machine Learning for Textual Data'. Together they form a unique fingerprint.

Cite this