Abstract
Optically controlled supercapacitors (S-C) could be of interest to the sensor community, as well as set the stage for novel optoelectronic charging devices. Here, structures constructed of two parallel transparent current collectors (indium-tin-oxide, ITO films on glass substrates) were considered. Active-carbon (A-C) films were used as electrodes. Two sets of electrodes were used: as-is electrodes that were used as the reference and electrodes that were embedded with submicron-or micron-sized titanium oxide (TiO2) colloids. While immersed in a 1 M Na2 SO4, the electrodes exhibited minimal thermal effects (<3◦ C) throughout the course of experiments). The optically induced capacitance increase for TiO2-embedded S-C was large of the order of 30%, whereas S-C without the TiO2 colloids exhibited minimal optically related effects (<3%). Spectrally, the blue spectral band had a relatively larger impact on the light-induced effects. A lingering polarization effect that increased the cell capacitance in the dark after prolonged light exposure is noted; that effect occurred without an indication of a chemical reaction.
Original language | English (US) |
---|---|
Article number | 1835 |
Journal | Nanomaterials |
Volume | 12 |
Issue number | 11 |
DOIs | |
State | Published - Jun 1 2022 |
All Science Journal Classification (ASJC) codes
- General Chemical Engineering
- General Materials Science
Keywords
- active-carbon films
- particles and colloidal embedded films
- semiconductor embedded supercapacitors
- supercapacitors