Optimizing peer learning in online groups with affinities

Mohammadreza Esfandiari, Dong Wei, Sihem Amer-Yahia, Senjuti Basu Roy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Scopus citations

Abstract

We investigate online group formation where members seek to increase their learning potential via collaboration. We capture two common learning models: LpA where each member learns from all higher skilled ones, and LpD where the least skilled member learns from the most skilled one. We formulate the problem of forming groups with the purpose of optimizing peer learning under different affinity structures: AffD where group affinity is the smallest between all members, and AffC where group affinity is the smallest between a designated member (e.g., the least skilled or the most skilled) and all others. This gives rise to multiple variants of a multi-objective optimization problem. We propose principled modeling of these problems and investigate theoretical and algorithmic challenges. We first present hardness results, and then develop computationally efficient algorithms with constant approximation factors. Our real-data experiments demonstrate with statistical significance that forming groups considering affinity improves learning. Our extensive synthetic experiments demonstrate the qualitative and scalability aspects of our solutions.

Original languageEnglish (US)
Title of host publicationKDD 2019 - Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages1216-1226
Number of pages11
ISBN (Electronic)9781450362016
DOIs
StatePublished - Jul 25 2019
Event25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2019 - Anchorage, United States
Duration: Aug 4 2019Aug 8 2019

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2019
Country/TerritoryUnited States
CityAnchorage
Period8/4/198/8/19

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'Optimizing peer learning in online groups with affinities'. Together they form a unique fingerprint.

Cite this