Abstract
Mobile edge computing (MEC) is leveraged to reduce the latency for the computation-intensive and latency-critical tasks offloaded from wireless devices and Internet of Things Devices (IoTDs). Unmanned aerial vehicles (UAVs) have attracted much attention from both academia and industry attributed to high mobility, high flexibility, and high maneuverability of UAVs. In this article, a novel UAV-assisted MEC architecture is proposed to provision services to IoTDs, where a UAV provides both communication and computing services or works as a relay node. We then formulate the joint computation offloading, spectrum resource allocation, computation resource allocation, and UAV placement (Joint-CAP) problem in the UAV-MEC network to minimize the operation cost of provisioning IoTDs. Since the Joint-CAP problem is a mixed integer non-linear programming problem and NP-hard, we decompose it into two sub-problems and solve the sub-problems sequentially. Then, we propose a $(1+\epsilon)$-approximation algorithm, named AA-CAP, to solve the Joint-CAP problem, and the performance of the AA-CAP algorithm is demonstrated to be superior to the baseline algorithms via simulations.
Original language | English (US) |
---|---|
Article number | 9420280 |
Pages (from-to) | 6085-6093 |
Number of pages | 9 |
Journal | IEEE Transactions on Vehicular Technology |
Volume | 70 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2021 |
All Science Journal Classification (ASJC) codes
- Automotive Engineering
- Aerospace Engineering
- Computer Networks and Communications
- Electrical and Electronic Engineering
Keywords
- Internet of Things
- Unmanned aerial vehicles
- computation offloading
- cost minimization
- joint resource allocation
- wireless backhauling