Optimizing uplink resource allocation for D2D overlaying cellular networks with power control

Jiajia Liu, Jiahao Dai, Nei Kato, Nirwan Ansari

Research output: Contribution to journalConference articlepeer-review

12 Scopus citations


In this paper, we present a stochastic geometry based framework to analyze the coverage probability and ergodic rate with different channel allocations for device-to-device (D2D) communications. Different from existing works, we assume there are two different kinds of users, cellular users and D2D users, in the muti-channel uplink cellular network. Specifically, cellular users can upload data to the nearest base station (BS) directly through cellular channels. However, D2D users must upload data to their own D2D relays through D2D channels and then the D2D relays communicate with the nearest BS through cellular channels. There is no overlapping between cellular channels and D2D channels. Each cellular user and D2D relay adopt the channel inversion power control with maximum transmit power limit. Our results indicate that the framework can help to find the optimal channel allocation to achieve the optimal system performance in terms of coverage probability and average rate.

Original languageEnglish (US)
Article number7842111
JournalProceedings - IEEE Global Communications Conference, GLOBECOM
StatePublished - 2016
Event59th IEEE Global Communications Conference, GLOBECOM 2016 - Washington, United States
Duration: Dec 4 2016Dec 8 2016

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Computer Networks and Communications
  • Hardware and Architecture
  • Signal Processing


Dive into the research topics of 'Optimizing uplink resource allocation for D2D overlaying cellular networks with power control'. Together they form a unique fingerprint.

Cite this