Oxidation of nano-sized aluminum powders

A. B. Vorozhtsov, M. Lerner, N. Rodkevich, H. Nie, A. Abraham, M. Schoenitz, E. L. Dreizin

Research output: Contribution to journalArticlepeer-review

67 Scopus citations


Oxidation of aluminum nanopowders obtained by electro-exploded wires is studied. Particle size distributions are obtained from transmission electron microscopy (TEM) images. Thermo-gravimetric (TG) experiments are complemented by TEM and XRD studies of partially oxidized particles. Qualitatively, oxidation follows the mechanism developed for coarser aluminum powder and resulting in formation of hollow oxide shells. Sintering of particles is also observed. The TG results are processed to account explicitly for the particle size distribution and spherical shapes, so that oxidation of particles of different sizes is characterized. The apparent activation energy is obtained as a function of the reaction progress using model-free isoconversion processing of experimental data. A complete phenomenological oxidation model is then proposed assuming a spherically symmetric geometry. The oxidation kinetics of aluminum powder is shown to be unaffected by particle sizes reduced down to tens of nm. The apparent activation energy describing growth of amorphous alumina is increasing at the very early stages of oxidation. The higher activation energy is likely associated with an increasing homogeneity in the growing amorphous oxide layer, initially containing multiple defects and imperfections. The trends describing changes in both activation energy and pre-exponent of the growing amorphous oxide are useful for predicting ignition delays of aluminum particles. The kinetic trends describing activation energies and pre-exponents in a broader range of the oxide thicknesses are useful for prediction of aging behavior of aluminum powders.

Original languageEnglish (US)
Pages (from-to)48-56
Number of pages9
JournalThermochimica Acta
StatePublished - Jul 20 2016

All Science Journal Classification (ASJC) codes

  • Instrumentation
  • Condensed Matter Physics
  • Physical and Theoretical Chemistry


  • Aging
  • Aluminum ignition
  • Heterogeneous reaction
  • Nano-aluminum
  • Thermal analysis


Dive into the research topics of 'Oxidation of nano-sized aluminum powders'. Together they form a unique fingerprint.

Cite this