Abstract
Full-color, catalyst-free InGaN/GaN dot-in-a-wire light-emitting diodes (LEDs) were monolithically grown on Si(111) by molecular beam epitaxy, with the emission characteristics controlled by the dot properties in a single epitaxial growth step. With the use of p-type modulation doping in the dot-in-a-wire heterostructures, we have demonstrated the most efficient phosphor-free white LEDs ever reported, which exhibit an internal quantum efficiency of ∼56.8%, nearly unaltered CIE chromaticity coordinates with increasing injection current, and virtually zero efficiency droop at current densities up to ∼640 A/cm2. The remarkable performance is attributed to the superior three-dimensional carrier confinement provided by the electronically coupled dot-in-a-wire heterostructures, the nearly defect- and strain-free GaN nanowires, and the significantly enhanced hole transport due to the p-type modulation doping.
Original language | English (US) |
---|---|
Pages (from-to) | 1919-1924 |
Number of pages | 6 |
Journal | Nano Letters |
Volume | 11 |
Issue number | 5 |
DOIs | |
State | Published - May 11 2011 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Bioengineering
- General Chemistry
- General Materials Science
- Condensed Matter Physics
- Mechanical Engineering
Keywords
- InGaN
- Nanowire
- light-emitting diodes
- molecular beam epitaxy
- p-doping
- quantum dot