Packaging and Sharing Machine Learning Models via the Acumos AI Open Platform

Shuai Zhao, Manoop Talasila, Guy Jacobson, Cristian Borcea, Syed Anwar Aftab, John F. Murray

Research output: Chapter in Book/Report/Conference proceedingConference contribution

29 Scopus citations

Abstract

Applying Machine Learning (ML) to business applications for automation usually faces difficulties when integrating diverse ML dependencies and services, mainly because of the lack of a common ML framework. In most cases, the ML models are developed for applications which are targeted for specific business domain use cases, leading to duplicated effort, and making reuse impossible. This paper presents Acumos, an open platform capable of packaging ML models into portable containerized microservices which can be easily shared via the platform's catalog, and can be integrated into various business applications. We present a case study of packaging sentiment analysis and classification ML models via the Acumos platform, permitting easy sharing with others. We demonstrate that the Acumos platform reduces the technical burden on application developers when applying machine learning models to their business applications. Furthermore, the platform allows the reuse of readily available ML microservices in various business domains.

Original languageEnglish (US)
Title of host publicationProceedings - 17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018
EditorsM. Arif Wani, Mehmed Kantardzic, Moamar Sayed-Mouchaweh, Joao Gama, Edwin Lughofer
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages841-846
Number of pages6
ISBN (Electronic)9781538668047
DOIs
StatePublished - Jul 2 2018
Event17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018 - Orlando, United States
Duration: Dec 17 2018Dec 20 2018

Publication series

NameProceedings - 17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018

Conference

Conference17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018
Country/TerritoryUnited States
CityOrlando
Period12/17/1812/20/18

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Computer Networks and Communications
  • Computer Science Applications
  • Computer Vision and Pattern Recognition
  • Safety, Risk, Reliability and Quality
  • Signal Processing
  • Decision Sciences (miscellaneous)

Keywords

  • Framework
  • Image processing
  • Machine learning
  • Miscroservice
  • Model sharing
  • Platform
  • Sentiment analysis

Fingerprint

Dive into the research topics of 'Packaging and Sharing Machine Learning Models via the Acumos AI Open Platform'. Together they form a unique fingerprint.

Cite this