Parameter-Dependent Competitive Analysis for Online Capacitated Coverage Maximization through Boostings and Attenuations

Research output: Contribution to journalConference articlepeer-review

Abstract

In this paper, we consider a model called Online Capacitated Coverage Maximization, characterized by two features: (1) the dynamic arrival of online agents following a known identical and independent distribution, and (2) each offline agent is associated with a specific coverage valuation over the groundset of online agents. Additionally, both offline and online agents are assigned integer capacities, reflecting finite budgets and operational constraints. We introduce and analyze two matching policies. The first, a non-adaptive policy, utilizes offline statistics derived from solving a benchmark linear program. The second is an enhanced version equipped with real-time boostings and attenuations. We conduct a comprehensive competitive analysis and characterize the competitive ratio for both policies as functions of two crucial parameters: a lower bound on the matching capacity among offline agents and an upper bound on the number of online agents covering any specific feature for offline agents.

Original languageEnglish (US)
Pages (from-to)54831-54851
Number of pages21
JournalProceedings of Machine Learning Research
Volume235
StatePublished - 2024
Externally publishedYes
Event41st International Conference on Machine Learning, ICML 2024 - Vienna, Austria
Duration: Jul 21 2024Jul 27 2024

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Parameter-Dependent Competitive Analysis for Online Capacitated Coverage Maximization through Boostings and Attenuations'. Together they form a unique fingerprint.

Cite this