Penalty based control mechanism for strategic prosumers in a distribution network

Arnob Ghosh, Vaneet Aggarwal

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

The distribution side of the traditional power grid is changing as the users (known as prosumers) can inject power to the grid. However, uncontrollable injection of power can destabilize the grid. Thus, the stability of the grid must be maintained. Since the prosumers are self-interested entities, they will take their actions to maximize their own pay-offs. We formulate the problem as a non-cooperative game theoretic problem where the magnitude of the voltage must be within an acceptable limit at each node of the power network. Since the power-flow equations must be satisfied at each node, it becomes a coupled constrained game where the constraints are the same across the prosumers. We propose a distributed penalty based algorithm which converges to an equilibrium. In this mechanism, the prosumers are quoted a price based on the active and reactive power drawn or injected to the power grid. The algorithm is easy to implement and it converges to an efficient solution which maximizes the sum of the utilities of the prosumers while maintaining the grid’s stability.

Original languageEnglish (US)
Article number452
JournalEnergies
Volume13
Issue number2
DOIs
StatePublished - 2020
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Control and Optimization
  • Energy (miscellaneous)
  • Engineering (miscellaneous)
  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering
  • Fuel Technology
  • Renewable Energy, Sustainability and the Environment

Keywords

  • Convex optimization
  • Coupled constrained game
  • Nash equilibrium
  • Power flow model
  • Primal-dual algorithm

Fingerprint

Dive into the research topics of 'Penalty based control mechanism for strategic prosumers in a distribution network'. Together they form a unique fingerprint.

Cite this