Abstract
Inspired by recent advances in multiple-input multiple-output (MIMO) communications, this paper introduces the statistical MIMO radar concept. The fundamental difference between statistical MIMO and other radar array systems is that the latter seek to maximize the coherent processing gain, while statistical MIMO radar capitalizes on the diversity of target scattering to improve radar performance. Coherent processing is made possible by highly correlated signals at the receiver array, whereas in statistical MIMO radar, the signals received by the array elements are uncorrelated. It is well known that in conventional radar, slow fluctuations of the target radar cross section (RCS) result in target fades that degrade radar performance. By spacing the antenna elements at the transmitter and at the receiver such that the target angular spread is manifested, the MIMO radar can exploit the spatial diversity of target scatterers opening the way to a variety of new techniques that can improve radar performance. In this paper, we focus on the application of the target spatial diversity to improve detection performance. The optimal detector in the Neyman-Pearson sense is developed and analyzed for the statistical MIMO radar. An optimal detector invariant to the signal and noise levels is also developed and analyzed. In this case as well, statistical MIMO radar provides great improvements over other types of array radars.
Original language | English (US) |
---|---|
Pages (from-to) | 305-309 |
Number of pages | 5 |
Journal | Conference Record - Asilomar Conference on Signals, Systems and Computers |
Volume | 1 |
State | Published - 2004 |
Event | Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers - Pacific Grove, CA, United States Duration: Nov 7 2004 → Nov 10 2004 |
All Science Journal Classification (ASJC) codes
- Signal Processing
- Computer Networks and Communications