Petascale computing for large-scale graph problems

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Graph theoretic problems are representative of fundamental kernels in traditional and emerging computational sciences such as chemistry, biology, and medicine, as well as applications in national security. Yet they pose serious challenges for parallel machines due to non-contiguous, concurrent accesses to global data structures with low degrees of locality. Few parallel graph algorithms outperform their best sequential implementation due to long memory latencies and high synchronization costs. In this talk, we consider several graph theoretic kernels for connectivity and centrality and discuss how the features of petascale architectures will affect algorithm development, ease of programming, performance, and scalability.

Original languageEnglish (US)
Title of host publicationProceedings - 21st International Parallel and Distributed Processing Symposium, IPDPS 2007; Abstracts and CD-ROM
DOIs
StatePublished - 2007
Externally publishedYes
Event21st International Parallel and Distributed Processing Symposium, IPDPS 2007 - Long Beach, CA, United States
Duration: Mar 26 2007Mar 30 2007

Publication series

NameProceedings - 21st International Parallel and Distributed Processing Symposium, IPDPS 2007; Abstracts and CD-ROM

Other

Other21st International Parallel and Distributed Processing Symposium, IPDPS 2007
Country/TerritoryUnited States
CityLong Beach, CA
Period3/26/073/30/07

All Science Journal Classification (ASJC) codes

  • Hardware and Architecture
  • Software
  • General Mathematics

Fingerprint

Dive into the research topics of 'Petascale computing for large-scale graph problems'. Together they form a unique fingerprint.

Cite this