Polymer coating/encapsulation of nanoparticles using a supercritical anti-solvent process

Yulu Wang, Rajesh N. Dave, Robert Pfeffer

Research output: Contribution to journalArticlepeer-review

165 Scopus citations

Abstract

Coating or encapsulation of nanoparticles is a major challenge due to the extremely small size, high surface energy, and high surface area of the nanoparticles. In this paper we describe a new method using supercritical CO2 as an anti-solvent (SAS) for nanoparticle coating/encapsulation. A model system, using silica nanoparticles as host particles and Eudragit polymer as the coating material, was chosen for this purpose. The SAS process causes a heterogeneous polymer nucleation with the nanoparticles acting as nuclei and a subsequent growth of polymer on the surface of the nanoparticles induced by mass transfer and phase transition. A polymer matrix structure of encapsulated nanoparticles is formed by agglomeration of the coated nanoparticles. Field emission scanning electron microscopy, transmission electron microscopy, electron energy loss spectroscopy and Fourier transform infrared spectroscopy were used to characterize the coated/encapsulated silica nanoparticles.

Original languageEnglish (US)
Pages (from-to)85-99
Number of pages15
JournalJournal of Supercritical Fluids
Volume28
Issue number1
DOIs
StatePublished - Jan 2004

All Science Journal Classification (ASJC) codes

  • General Chemical Engineering
  • Condensed Matter Physics
  • Physical and Theoretical Chemistry

Keywords

  • Coating
  • Encapsulation
  • Nanoparticles
  • Nucleation
  • Supercritical anti-solvent

Fingerprint

Dive into the research topics of 'Polymer coating/encapsulation of nanoparticles using a supercritical anti-solvent process'. Together they form a unique fingerprint.

Cite this