Skip to main navigation
Skip to search
Skip to main content
New Jersey Institute of Technology Home
Help & FAQ
Home
Profiles
Research units
Facilities
Federal Grants
Research output
Press/Media
Search by expertise, name or affiliation
Predicting divalent metal sorption to hydrous Al, Fe, and Mn oxides
Paras Trivedi,
Lisa Axe
Chemical and Materials Engineering
Research output
:
Contribution to journal
›
Article
›
peer-review
124
Scopus citations
Overview
Fingerprint
Fingerprint
Dive into the research topics of 'Predicting divalent metal sorption to hydrous Al, Fe, and Mn oxides'. Together they form a unique fingerprint.
Sort by
Weight
Alphabetically
Keyphrases
Hydrous
100%
Mn Oxides
100%
Fe Oxides
100%
Metal Sorption
100%
Al-Fe
100%
Al Oxide
100%
Al-Mn
100%
Polanyi
100%
Divalent Metals
100%
Oxides
66%
Activation Energy
66%
Amorphous Oxides
66%
Metal Ions
33%
Electrostatic Force
33%
Adsorption
33%
Contaminant Mobility
33%
Sorption
33%
Thermodynamic Parameters
33%
Transport Parameters
33%
Contaminant Bioavailability
33%
Surface Interaction
33%
Oxide Surfaces
33%
Predictive Methods
33%
Intraparticle Diffusion
33%
Physical Type
33%
Reaction Types
33%
Aluminum-manganese Alloy
33%
Activation Theory
33%
Surface Diffusivity
33%
Surface Potential
33%
Hydrated Radius
33%
Adsorbate
33%
Sorption Parameters
33%
Metal Cations
33%
Sinusoidal Function
33%
Sorption Complex
33%
Hydration Water
33%
Periodic Group
33%
Hydration number
33%
Engineering
Activation Energy
100%
Amorphous Oxide
100%
Adsorption
50%
Electrostatics
50%
Assuming
50%
Surface Oxide
50%
Diffusivity
50%
Surface Potential
50%
Hydration Number
50%
Chemistry
Enthalpy
100%
Metal Ion
66%
Reaction Activation Energy
66%
Micro Porosity
33%
Manganese
33%
Diffusivity
33%
Aluminum
33%
Electrostatic Force
33%
Bioavailability
33%
Surface Potential
33%
Hydration Number
33%
Material Science
Oxide Compound
100%
Amorphous Material
40%
Activation Energy
40%
Aluminum
20%
Manganese
20%
Diffusivity
20%
Oxide Surface
20%
Chemical Engineering
Sorption
100%
Enthalpy
75%
Adsorption
25%
Diffusion
25%