TY - GEN
T1 - Prediction of forelimb muscle EMGs from the corticospinal signals in rats
AU - Gok, Sinan
AU - Sahin, Mesut
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/10/13
Y1 - 2016/10/13
N2 - To generate voluntary forearm movements, the information that is encoded in the activity of the cortical neurons has to travel through the spinal cord and activate the skeletal muscles. The axons carrying these signals are tightly bundled together in the descending tracts that control the spinal circuitry innervating the forearm muscles. In this paper, we show that corticospinal tract (CST) signals can be used to predict forearm electromyographic (EMG) activities that are recorded during an isometric-pull task. Rats were trained to pull on a metal bar through a window. A flexible-substrate multi-electrode array was chronically implanted into the dorsal column of the cervical spinal cord. Field potentials and multi-unit activities were recorded from the descending axons of the CST while the rat performed the task. Forelimb forces and EMG signals from a wrist extensor and a flexor, and the biceps and triceps were reconstructed using the neural signals in multiple sessions over three weeks. The regression coefficients found from the trial set were cross-validated on the other trials recorded on the same day. The maximum correlation coefficient between the actual and predicted signal was for the biceps (R=0.88). These results suggest the feasibility of an EMG-based spinal-cord-computer-interface (SCCI) for subjects with spinal cord injury.
AB - To generate voluntary forearm movements, the information that is encoded in the activity of the cortical neurons has to travel through the spinal cord and activate the skeletal muscles. The axons carrying these signals are tightly bundled together in the descending tracts that control the spinal circuitry innervating the forearm muscles. In this paper, we show that corticospinal tract (CST) signals can be used to predict forearm electromyographic (EMG) activities that are recorded during an isometric-pull task. Rats were trained to pull on a metal bar through a window. A flexible-substrate multi-electrode array was chronically implanted into the dorsal column of the cervical spinal cord. Field potentials and multi-unit activities were recorded from the descending axons of the CST while the rat performed the task. Forelimb forces and EMG signals from a wrist extensor and a flexor, and the biceps and triceps were reconstructed using the neural signals in multiple sessions over three weeks. The regression coefficients found from the trial set were cross-validated on the other trials recorded on the same day. The maximum correlation coefficient between the actual and predicted signal was for the biceps (R=0.88). These results suggest the feasibility of an EMG-based spinal-cord-computer-interface (SCCI) for subjects with spinal cord injury.
UR - http://www.scopus.com/inward/record.url?scp=85009063759&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85009063759&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2016.7591307
DO - 10.1109/EMBC.2016.7591307
M3 - Conference contribution
C2 - 28268895
AN - SCOPUS:85009063759
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 2780
EP - 2783
BT - 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
Y2 - 16 August 2016 through 20 August 2016
ER -