TY - GEN
T1 - Preference-aware task assignment in on-demand taxi dispatching
T2 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
AU - Zhao, Boming
AU - Xu, Pan
AU - Shi, Yexuan
AU - Tong, Yongxin
AU - Zhou, Zimu
AU - Zeng, Yuxiang
N1 - Publisher Copyright:
© 2019, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2019
Y1 - 2019
N2 - A central issue in on-demand taxi dispatching platforms is task assignment, which designs matching policies among dynamically arrived drivers (workers) and passengers (tasks). Previous matching policies maximize the profit of the platform without considering the preferences of workers and tasks (e.g., workers may prefer high-rewarding tasks while tasks may prefer nearby workers). Such ignorance of preferences impairs user experience and will decrease the profit of the platform in the long run. To address this problem, we propose preference-aware task assignment using online stable matching. Specifically, we define a new model, Online Stable Matching under Known Identical Independent Distributions (OSM-KIID). It not only maximizes the expected total profits (OBJ-1), but also tries to satisfy the preferences among workers and tasks by minimizing the expected total number of blocking pairs (OBJ-2). The model also features a practical arrival assumption validated on real-world dataset. Furthermore, we present a linear program based online algorithm LP-ALG, which achieves an online ratio of at least 1 - 1/e on OBJ-1 and has at most 0.6 · |E| blocking pairs ex-pectedly, where |E| is the total number of edges in the compatible graph. We also show that a natural Greedy can have an arbitrarily bad performance on OBJ-1 while maintaining around 0.5 · |E| blocking pairs. Evaluations on both synthetic and real datasets confirm our theoretical analysis and demonstrate that LP-ALG strictly dominates all the baselines on both objectives when tasks notably outnumber workers.
AB - A central issue in on-demand taxi dispatching platforms is task assignment, which designs matching policies among dynamically arrived drivers (workers) and passengers (tasks). Previous matching policies maximize the profit of the platform without considering the preferences of workers and tasks (e.g., workers may prefer high-rewarding tasks while tasks may prefer nearby workers). Such ignorance of preferences impairs user experience and will decrease the profit of the platform in the long run. To address this problem, we propose preference-aware task assignment using online stable matching. Specifically, we define a new model, Online Stable Matching under Known Identical Independent Distributions (OSM-KIID). It not only maximizes the expected total profits (OBJ-1), but also tries to satisfy the preferences among workers and tasks by minimizing the expected total number of blocking pairs (OBJ-2). The model also features a practical arrival assumption validated on real-world dataset. Furthermore, we present a linear program based online algorithm LP-ALG, which achieves an online ratio of at least 1 - 1/e on OBJ-1 and has at most 0.6 · |E| blocking pairs ex-pectedly, where |E| is the total number of edges in the compatible graph. We also show that a natural Greedy can have an arbitrarily bad performance on OBJ-1 while maintaining around 0.5 · |E| blocking pairs. Evaluations on both synthetic and real datasets confirm our theoretical analysis and demonstrate that LP-ALG strictly dominates all the baselines on both objectives when tasks notably outnumber workers.
UR - http://www.scopus.com/inward/record.url?scp=85072044942&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072044942&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85072044942
T3 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
SP - 2245
EP - 2252
BT - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PB - AAAI press
Y2 - 27 January 2019 through 1 February 2019
ER -