TY - GEN
T1 - Privacy-preserving data visualization using parallel coordinates
AU - Dasgupta, Aritra
AU - Kosara, Robert
N1 - Copyright:
Copyright 2011 Elsevier B.V., All rights reserved.
PY - 2011
Y1 - 2011
N2 - The proliferation of data in the past decade has created demand for innovative tools in different areas of exploratory data analysis, like data mining and information visualization. However, the problem with real-world datasets is that many of their attributes can identify individuals, or the data are proprietary and valuable. The field of data mining has developed a variety of ways for dealing with such data, and has established an entire subfield for privacy-preserving data mining. Visualization, on the other hand, has seen little, if any, work on handling sensitive data. With the growing applicability of data visualization in real-world scenarios, the handling of sensitive data has become a non-trivial issue we need to address in developing visualization tools. With this goal in mind, in this paper, we analyze the issue of privacy from a visualization perspective and propose a privacy-preserving visualization technique based on clustering in parallel coordinates. We also outline the key differences in approach from the privacy-preserving data mining field and compare the advantages and drawbacks of our approach.
AB - The proliferation of data in the past decade has created demand for innovative tools in different areas of exploratory data analysis, like data mining and information visualization. However, the problem with real-world datasets is that many of their attributes can identify individuals, or the data are proprietary and valuable. The field of data mining has developed a variety of ways for dealing with such data, and has established an entire subfield for privacy-preserving data mining. Visualization, on the other hand, has seen little, if any, work on handling sensitive data. With the growing applicability of data visualization in real-world scenarios, the handling of sensitive data has become a non-trivial issue we need to address in developing visualization tools. With this goal in mind, in this paper, we analyze the issue of privacy from a visualization perspective and propose a privacy-preserving visualization technique based on clustering in parallel coordinates. We also outline the key differences in approach from the privacy-preserving data mining field and compare the advantages and drawbacks of our approach.
KW - K-anonymity
KW - Parallel coordinates
KW - Privacy
KW - Visualization
UR - http://www.scopus.com/inward/record.url?scp=79951913763&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79951913763&partnerID=8YFLogxK
U2 - 10.1117/12.872635
DO - 10.1117/12.872635
M3 - Conference contribution
AN - SCOPUS:79951913763
SN - 9780819484055
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Proceedings of SPIE-IS and T Electronic Imaging - Visualization and Data Analysis 2011
T2 - Visualization and Data Analysis 2011
Y2 - 24 January 2011 through 25 January 2011
ER -