Abstract
A high frequency theoretical model of propagation and scattering in vegetation is presented which uses scalar radiative transport theory. The specific problem analyzed is that of a periodic sequence of Gaussian pulses incident from free space into a forest region (vegetation). The incident pulse train is taken to be a spherical wave that is restricted to a specified solid angle, which is characteristic of radiation produced by a microwave or mm-wave antenna. The forest is modeled as a half-space of randomly distributed particles that scatter and absorb electromagnetic energy. In the forest, strong forward scattering occurs and the theory allows for a comprehensive characterization of the effect of vegetation on the propagation and scattering of spherical wave pulses: their attenuation, their angular spread, their distortion due to pulse broadening.
Original language | English (US) |
---|---|
Article number | 5422630 |
Pages (from-to) | 1662-1676 |
Number of pages | 15 |
Journal | IEEE Transactions on Antennas and Propagation |
Volume | 58 |
Issue number | 5 |
DOIs | |
State | Published - May 2010 |
All Science Journal Classification (ASJC) codes
- Electrical and Electronic Engineering
Keywords
- Pulse propagation in vegetation
- Scattering in random media
- Spherical waves
- Transport theory