Abstract
In this paper, a three-dimensional model taking into account the contact deformation and surface area coverage (SAC) of nanoadditives is proposed to predict the force required to separate two contacting particles (the pull-off force) under consolidation stress up to 10 KPa, for cornstarch, a Geldart group C powder, sparsely and densely dry-coated with nanosilica. The experimental pull-off force measurement is conducted in a Seville powder tester. Comparison of the predicted results with the experimental results indicates (1) that the pull-off force of sparsely coated cornstarch is larger than that of densely coated cornstarch due to the greater hardness and small particle radius of fumed silica; (2) there is not a continuous variation in the pull-off force with the coverage of silica; on the contrary, values of the pull-off force of sparsely coated samples are grouped in similar range, while the values of the pull-off force of densely coated samples are grouped in another range of lower values. (3) Within a range, the SAC does not have a big effect on the pull-off force for sparsely coated samples and only a slight effect for densely coated samples (4) the pull-off force increases with increasing consolidation force due to larger deformation in the contact area; (5) under consolidation stresses up to 10 KPa, the deformation of the cornstarch particles is not large enough to fully embed the nanosized silica.
Original language | English (US) |
---|---|
Article number | 041305 |
Journal | Physical Review E - Statistical, Nonlinear, and Soft Matter Physics |
Volume | 79 |
Issue number | 4 |
DOIs | |
State | Published - Apr 1 2009 |
All Science Journal Classification (ASJC) codes
- Statistical and Nonlinear Physics
- Statistics and Probability
- Condensed Matter Physics